
www.manaraa.com

Rochester Institute of Technology Rochester Institute of Technology

RIT Scholar Works RIT Scholar Works

Theses

12-19-2018

An Application of Deep-Learning to Understand Human An Application of Deep-Learning to Understand Human

Perception of Art Perception of Art

Sanjana Kapisthalam
sxk9196@rit.edu

Follow this and additional works at: https://scholarworks.rit.edu/theses

Recommended Citation Recommended Citation
Kapisthalam, Sanjana, "An Application of Deep-Learning to Understand Human Perception of Art" (2018).
Thesis. Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in
Theses by an authorized administrator of RIT Scholar Works. For more information, please contact
ritscholarworks@rit.edu.

https://scholarworks.rit.edu/
https://scholarworks.rit.edu/theses
https://scholarworks.rit.edu/theses?utm_source=scholarworks.rit.edu%2Ftheses%2F9970&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.rit.edu/theses/9970?utm_source=scholarworks.rit.edu%2Ftheses%2F9970&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ritscholarworks@rit.edu

www.manaraa.com

An Application of Deep-Learning to Understand Human Perception of
Art

by

Sanjana Kapisthalam

A thesis submitted in partial fulfillment of the

requirements for the degree of Master of Science

in the Chester F. Carlson Center for Imaging Science

College of Science

Rochester Institute of Technology

Dec 19, 2018

Signature of the Author

Accepted by
Coordinator, M.S. Degree Program Date

www.manaraa.com

CHESTER F. CARLSON CENTER FOR IMAGING SCIENCE

COLLEGE OF SCIENCE

ROCHESTER INSTITUTE OF TECHNOLOGY

ROCHESTER, NEW YORK

CERTIFICATE OF APPROVAL

M.S. DEGREE THESIS

The M.S. Degree Thesis of Sanjana Kapisthalam
has been examined and approved by the
thesis committee as satisfactory for the

thesis required for the
M.S. degree in Imaging Science

Dr. Elena Fedorovskaya, Thesis Advisor

Dr. Christopher Kanan

Dr. Andrew M. Herbert

Date

2

www.manaraa.com

An Application of Deep-Learning to Understand Human Perception of
Art

by

Sanjana Kapisthalam

Submitted to the
Chester F. Carlson Center for Imaging Science

in partial fulfillment of the requirements
for the Master of Science Degree

at the Rochester Institute of Technology

Abstract

Eye movement patterns are known to differ when looking at stimuli given a different task,
but less is known about how these patterns change as a function of expertise. When a
particular visual pattern is viewed, a particular sequence of eye movements are executed
and this sequence is defined as scanpath. In this work we made an attempt to answer the
question, “Do art novices and experts look at paintings differently?” If they do, we should
be able to discriminate between the two groups using machine learning applied to their
scanpaths. This can be done using algorithms for Multi-Fixation Pattern Analyses (MFPA).
MFPA is a family of machine learning algorithms for making inferences about people from
their gaze patterns. MFPA and related approaches have been widely used to study viewing
behavior while performing visual tasks, but earlier approaches only used gaze position (x,
y) information with duration and temporal order and not the actual visual features in
the image. In this work, we extend MFPA algorithms to use visual features in trying to
answer a question that has been overlooked by most early studies, i.e. if there is a difference
found between experts and novices, how different are their viewing patterns and do these
differences exist for both low- and high-level image features. To address this, we combined
MFPA with a deep Convolutional Neural Network (CNN). Instead of converting a trial’s
2-D fixation positions into Fisher Vectors, we extracted image features surrounding the
fixations using a deep CNN and turn them into Fisher Vectors for a trial. The Fisher Vector
is an image representation obtained by pooling local image features. It is frequently used as
a global image descriptor in visual classification. We call this approach MFPA-CNN. While
CNNs have been previously used to recognize and classify objects from paintings, this work
goes the extra step to study human perception of paintings. Ours is the first attempt to use
MFPA and CNNs to study the viewing patterns of the subjects in the field of art.

3

www.manaraa.com

4

If our approach is successful in differentiating novices from experts with and without
instructions when both low- and high-level CNN image features were used, we could then
demonstrate that novices and experts view art differently. The outcome of this study could
be then used to further investigate what image features the subjects are concentrating on.
We expect this work to influence further research in image perception and experimental
aesthetics.

www.manaraa.com

Acknowledgements

I would like to thank my advisor, Dr. Elena Fedorovskaya, for all the help and advice during
my studies at Rochester Institute of Technology. Many people have contributed in various
ways to make this M.S. study an exciting and a memorable journey. Over the past two
years, it has been my great honor to work with all the members of the Discover Lab. I am
indebted to the members of my committee, specifically Dr. Kanan and Dr. Herbert, for
their input, patience, and support throughout my research. I owe sincere gratitude to CIS,
especially, Dr. Messinger, Dr. Kerekes and Dr. Bachmann who advised and supported me
in all possible ways to complete my study successfully. In addition, I would like to thank
the staff of the Carlson Center for Imaging Science for their support and assistance. I am
grateful to my family: my grandparents, parents, and my brothers for always encouraging
me and pushing me towards achieving my dreams. Finally, I would like to thank all my
friends, near and far, for their love, support, and care.

5

www.manaraa.com

to my grandparents

6

www.manaraa.com

Contents

1 Introduction 12

2 Background 14
2.1 Eye Movements and Eye-Tracking Technology 14

2.1.1 Types of Eye Movements . 15
2.1.2 Recording Eye Movements . 16

2.2 Factors Influencing Viewing Behavior . 17
2.2.1 Influence of Tasks on Viewing Behavior 17
2.2.2 Influence of Training on Viewing Behavior 19

2.3 The Role of Art Training in Aesthetic Appreciation 19
2.4 Methods for Analyzing Eye Movements . 20
2.5 Studies Differentiating Art Experts and Novices 21
2.6 Machine Learning to Analyze Eye Movements 23

3 Study Description 25
3.1 Experiment Design . 25
3.2 Stimuli and Materials . 25
3.3 Procedure . 26

4 Methods 27
4.1 The Summary Statistics Method . 28
4.2 Method based on Gaussian Mixture Model and Fisher Vectors 29
4.3 Methods Combining MFPA with a Deep CNN 30

4.3.1 Feature Extraction From Image Patches 31
4.3.2 Feature Extraction From Fixation Locations 33

4.4 Classification . 34
4.4.1 Softmax Classifier . 34

7

www.manaraa.com

CONTENTS 8

4.4.2 Softmax vs SVM . 35

5 Results 36

6 Discussion 40

7 Summary 43
7.1 Conclusions . 43
7.2 Limitations . 44
7.3 Applications and Future Work . 44

8 Appendix 50
8.1 Python Codes . 50

8.1.1 Dataset Manager . 50
8.1.2 Neural Net Feature Extractor . 54
8.1.3 Fisher Vector Extractor . 61
8.1.4 Main Calling Script . 69

www.manaraa.com

List of Figures

2.1 Pictorial representation of visualizations obtained from an eye-tracker. On
the left is an image which represents a gaze plot where the circles represent
the location, its size represents the duration, and the number represents the
order in which they traced those locations. On the right is a heatmap which
represents which areas of the image attract more attention compared to the
others. Image Courtesy - [1]. 17

3.1 Pictorial representation of the experimental set-up. 26

4.1 From left to right, we show example scanpaths from one subject of each
group. The first row represents the scanpath of an expert, instructed and
non-instructed. Similarly, the second row represents the scanpath of a novice,
instructed and non-instructed. 27

4.2 Schematic representation of our method. (a) Original image with some
fixations. (b) n × n image patches extracted from areas surrounding each
fixation. (c) 50 layer deep convolutional neural network. (d) Flowchart of
the modified MFPA algorithm based on Fisher Vectors extracted from GMM. 31

4.3 A flowchart representing our methodology. 32
4.4 Pictorial representation of the concept - Visual Angle. 33

5.1 In the figure, the first column represents the confusion matrices for comparison
between experts and novices, the second column for instructed and non-
instructed subjects and the last column represents confusion matrices for all
our four groups. Rows represent the methods summary statistics and the
original MFPA, respectively. Columns of each confusion matrix represent the
predicted classes while the rows represent the ground-truth classes. 38

9

www.manaraa.com

LIST OF FIGURES 10

5.2 In the figure, the first column represents the confusion matrices for comparison
between experts and novices, the second column for instructed and non-
instructed subjects and the last column represents confusion matrices for all
our four groups. Rows represent the methods MFPA-CNN(L) and MFPA-
CNN(H), respectively. Columns of each confusion matrix represent the
predicted classes while the rows represent the ground-truth classes. 38

www.manaraa.com

List of Tables

5.1 Classification accuracy with their 95% confidence intervals obtained from the
original MFPA methods after hold-one-out cross-validation. 37

5.2 Classification accuracy with their 95% confidence intervals obtained from our
algorithm-1 involving patches of sizes 9x9, 17x17, 34x34, and 68x68 after
hold-one-out cross-validation. 37

5.3 Classification accuracy with their 95% confidence intervals obtained from our
algorithm-2 after hold-one-out cross-validation. 37

11

www.manaraa.com

Chapter 1

Introduction

Recording eye movements and analyzing them provides valuable information about how
people view and comprehend the world. Since the time of research done by pioneers like
Buswell and Yarbus, the advances in eye-tracking technology has come very far. Modern
remote and wearable eye-tracking devices collect eye movement data non-intrusively. A vast
amount of literature is available on studying eye movements with eye-tracking technology,
and a wide range of disciplines use these devices including psychology, psycholinguistics,
computer science, marketing, etc. The application of eye-tracking has provided more access
to vision scientists to delve deeper into studying human vision and visual attention.

Buswell and Yarbus were amongst the first to investigate the relationship between eye
movements and high-level cognitive factors [2, 3]. The results from Yarbus’ early experiments
suggest that human viewing behavior is affected if a task is given while the observer is viewing
the stimulus. Since then, many researchers conducted experiments involving tasks with
different instructions and provided results supporting Yarbus’ early work [4, 5, 6, 7].

While there is a considerable amount of work being done by researchers to study and
understand eye movements during various visual tasks [8, 9], there has been an increasing
interest in using gaze data in experimental aesthetics to understand the aesthetic experience
[10, 11, 12, 13]. It has been shown that differences in gaze patterns while viewing art can
be studied by examining fixations, saccades, and scanpaths [14].

A number of researchers attempted to study the perception of art with recorded eye
movements [15, 16, 17, 18, 19, 14, 20, 21, 22], to get a comparison between art experts and
novices. These studies show that there is indeed a difference between eye movements of

12

www.manaraa.com

CHAPTER 1. INTRODUCTION 13

experts and novices when viewing images of art and some of them even show that there were
striking differences when instructions were given as part of their experiments. Although
all these studies were able to demonstrate the differences between art experts and novices
viewing art the approaches used by them were mostly descriptive. In [11] it was pointed out,
that experts were more likely to have saccades of a larger amplitude compared to novices.
The authors claim that the experts were more attentive to the relationships between objects
in a painting while on the other hand, novices were attracted to recognizable objects in
a painting. These studies are limited in that they cannot predictably link the viewers’
expertise or instruction with the gaze data and provide information on the contribution of
low- and high-level features of an image to the viewing behavior of the expert and novice
observers expressed in their eye movement patterns.

Although, the above stated work shows that there are differences between experts and
novices viewing art, the present work aims to answer the following questions: Do experts
and novices view paintings differently? If differences exist between their eye movements,
what factors contribute to these differences? Do these patterns of eye movements differ
based on experience, knowledge, instructions, and image features?.

While we are not the first ones to address these questions, the novelty behind our work
stands in our approach to answer them.

For this research, we consider experts as those who studied art history or are trained to
understand art in the form of paintings and novices as those who do not have any background
in art. In our approach we use machine learning techniques, and the ideas behind our
method of analysis are inspired by [23]. We attempt to address our research questions using
algorithms, specifically, the methods that employ convolutional neural networks. To the
best of our knowledge, we are the first ones to use these methods in the field of experimental
aesthetics and art perception, especially in comparing viewing behavior of experts and
novices.

www.manaraa.com

Chapter 2

Background

Every time we open our eyes, light from the surroundings passes through the cornea, pupil,
lens and then finally reaches the retina. This light carries much information. Post retinal
processing includes passing all this information from ganglion cells traveling through optic
nerves, passing by the Lateral Geniculate Nucleus (LGN), and eventually reaching our visual
cortex. Our brain is powerful enough to process this information seen through the eyes in
a fraction of a second. This entire process is called “Visual Processing.” It has been said
that we are under the impression that we can process an entire visual field in a single glance
but the reality is, we cannot process this information outside of the foveal vision if we are
unable to move our eyes [24].

2.1 Eye Movements and Eye-Tracking Technology

Eye movement is defined as the intentional or unintentional motion of the eye, helping in
scanning, fixating, and tracking a visual stimulus. Eye movement is essential to processing
details of any information in the visual field because of acuity limitations in our retina. High
visual acuity is constrained to the fovea, the small circular region in the central retina, which
is a rod free region densely packed with cone photoreceptors. Eye movements are important
because they are capable of directing the fovea to new locations of interest or recompense
for any disturbances that displace the fovea from the location it is already attending.

Several decades ago, a Russian physiologist named Alfred Yarbus demonstrated that eye
movements disclose a great deal about the strategies used while observing a scene. As

14

www.manaraa.com

CHAPTER 2. BACKGROUND 15

part of his experimental set-up, Yarbus used contact lenses with mirrors on them to record
eye movement patterns of subjects viewing different objects and scenes. In one of his
early experiments, he made his observers view a portrait at different times. His analysis
demonstrated that when the same image is shown repeatedly, the observers’ eye movements
are similar but not identical [3]. The results from Yarbus’ experiments and many other
researchers over the years showed that vision is an active process with eye movements
typically shifting from one location to another while viewing a scene to observe especially
interesting and meaningful features.

The importance of eye movements in pattern recognition was demonstrated by [8]. They
conducted an experiment to record eye movements of their subjects viewing arrays of
randomly generated black and white pixels. While viewing the stimuli, the subjects were
asked to indicate whether there were identical arrays or differed by one pixel under two
conditions. In the first condition, the subjects were instructed to use normal eye movements,
and in the second one, subjects were instructed to fixate on a point between the arrays.

When the subjects moved their eyes freely, they quickly found the different pixel in the
arrays. However, under the second condition when the subjects were required to look at a
fixation point, search for the different pixel was less efficient and sometimes not found despite
giving the subjects more time to see the stimulus. The authors’ findings showed that eye
movements indeed play an essential role in the analysis and recognition of patterns.

More recently, several studies conducted experiments and showed that an observer’s task and
mental state could be decoded from their eye-movements [6, 7, 23]. All these experiments
point in one direction as to how essential eye movements are and how much information one
can gather just by analyzing eye movements.

2.1.1 Types of Eye Movements

There are four basic types of eye movements - saccades, smooth pursuit movements, vergence
movements, and vestibulo-ocular movements. Saccades are rapid, ballistic movements of
the eyes which help the fovea to move from one location to another. The slow tracking
movements of the eyes that keep a moving stimulus on the fovea are called smooth pursuit
movements. Vergence movements help in the alignment of the fovea of each eye with targets
located at different distances from the viewer. Vestibulo-ocular movements stabilize the eyes
relative to the external world and thus compensate for any head movements.

Eye movements allow us to scan the visual field, to focus our attention, and to pause on
areas of the scene that carries most significant information. Tracking these eye movements

www.manaraa.com

CHAPTER 2. BACKGROUND 16

could potentially tell us what aspects of the scene are of interest to the viewer. For this, we
have eye-tracking devices that enable us to track eye movements and provide us with a lot
more information in great detail.

2.1.2 Recording Eye Movements

Eye-trackers have been used to study eye movements and understand the scientific basis
of visual experience. Eye-trackers are devices that enable us to record eye movements and
study human viewing behavior concerning the position of the eyes and the movements they
make. In basic terminology, measurement of eye activity is called eye tracking. The data
from an eye-tracker is collected using either a remote or head-mounted eye-tracker connected
to a computer. There is an intrusive and a non-intrusive type of eye-trackers. In the present
study, we use a non-intrusive remote eye-tracker, developed by the company SensoMotoric
Instruments (SMI). The non-intrusive remote eye-tracker works by illuminating the eyes
using an infrared light source and tracks the reflection of the light source in the eyes and
pupils with the built-in camera.

The data obtained from an eye-tracker holds the record of fixations and saccades on a scene.
Fixations are the relatively stable positions of the eye on a visual stimulus from where
visual information is gathered. The sequence of the eye movements organized in time is
called saccades, and they help to move from one fixation point to another. Additionally, the
eye-trackers provide information on the frequency of blinks and the change in diameter of
the pupil which we do not take into consideration as part of our research.

Scanpath

Scanpaths hold the record of fixation locations traced by an eye-tracker. Noton and Stark
were the first ones to define the concept of a “scanpath” [25, 26]. They proposed the “scanpath
theory,” according to which when a particular visual pattern is viewed, a particular sequence
of eye movements is executed and furthermore, that this sequence is crucial in assessing the
visual memory for this pattern. Over the years, this theory has been disputed strongly by
researchers who accumulated considerable evidence from experiments with natural images
that the human gaze selects informative details, i.e. that eye fixations tend to get drawn
towards or near important details of images. However, the formulation of a scanpath as a
sequence of fixations along a viewing trajectory has been useful to analyze the patterns of
eye movements.

www.manaraa.com

CHAPTER 2. BACKGROUND 17

Figure 2.1: Pictorial representation of visualizations obtained from an eye-tracker. On the
left is an image which represents a gaze plot where the circles represent the location, its size
represents the duration, and the number represents the order in which they traced those
locations. On the right is a heatmap which represents which areas of the image attract more
attention compared to the others. Image Courtesy - [1].

Throughout our work, we will be considering scanpath as eye movement data recorded by
an eye-tracking device where this recorded information is about the scanning path of a
visual scene organized in time. Therefore, the scanpath consists of where observers looked
at, i.e. their fixation locations, and how long their eyes remained in that location, i.e.
duration of fixations. Eye tracking software programs can visualize eye movement data as
gaze plots and heat maps (see Figure 2.1). Gaze plot can be considered as a visualization of
a scanpath.

2.2 Factors Influencing Viewing Behavior

Various factors influence viewing behavior. As part of our work, we are concerned with the
influence of task at hand, expertise, and instruction on viewing behavior. In the following
sections, we discuss each of these factors briefly.

2.2.1 Influence of Tasks on Viewing Behavior

Extensive research has been done in the past to understand human visual perception and
comprehension along with the relationship between perceptual and cognitive factors and
gaze patterns. The first attempts to study this link were made in [2] and [3]. Yarbus, in his
book [3] explains image perception, the basic mechanisms behind human eye movements,

www.manaraa.com

CHAPTER 2. BACKGROUND 18

and the theory on the role these eye movements play in the processing of visual information.
To understand the nature of the gaze patterns while viewing visual stimuli observed in the
studies done by [2] and [3], [4] replicated Yarbus’ experiment using a head-free eye tracker
and described in detail how viewing patterns differ in people and vary if specific instructions
are given a priori. Overall, this confirms the seminal work done by [3] and shows that eye
movement patterns are task and instruction dependent.

Similar to [4, 3], an experiment was conducted by [5] where the subjects were shown an
image of “Alfred Yarbus.” There were two conditions imposed, first was a free viewing
condition and the second, a condition with a series of changing instructions. Under the
free viewing condition, all the subjects fixated at the center, mostly around Yarbus’s face.
When the participants were given instructions asking them to remember various areas of
the image, their fixations were more evenly distributed, focusing on the regions they were
asked to remember. This experiment shows that people view the same image differently
depending on the instruction given before the experiment. This outcome further confirmed
the findings of [4].

The findings from [4, 5] are important for our work as we would like to see if prior instructions
affect the viewing behavior of the subjects as part of our experiments.

Presently, two hypothetical mechanisms are used to explain the relationship between gaze
patterns, attention, and visual perception: (I)where the image presents specific information
relevant to the task at hand, human vision is influenced by top-down factors, i.e., human
vision tends to get attracted towards areas of the image with relevant and meaningful
information; (II)where the image does not carry essential or useful information available,
human vision is influenced by bottom-up factors, i.e., it tends to get attracted towards
low-level image features such as color, edges, etc., [27, 28, 29]. Although the hypotheses
point toward different mechanisms, they are both considered to be true depending on various
factors such as the task at hand, subjects’ experience, their a priori knowledge about the
image, the type of images being viewed, etc. For example, if a viewer sees a visual stimulus
with a goal of searching something in the stimulus or if they are given a task to remember
what they saw, this points toward the top-down mechanism. On the other hand, if a viewer
merely sees a stimulus with no inner intention or a given task, then it points toward the
bottom-up mechanism of visual attention.

www.manaraa.com

CHAPTER 2. BACKGROUND 19

2.2.2 Influence of Training on Viewing Behavior

An increased interest in studying eye movements has prompted researchers to study the
influence of training on viewing behavior. This interest has resulted in many studies leading
to the comparison of eye movements of experts and novices in different fields of expertise.
For example, for example, [30] showed that expert radiologists had a “gestalt-like” perception
while scanning mammography images in detecting breast cancer. In a game like chess, [31]
showed that experts fixated beside their next chess moves and all around the center of the
board while the novices fixated more often on the pieces they felt the need to move or
to protect. As part of this work, the authors mention that this particular eye movement
pattern of chess experts was accompanied by bi-lateral activation of the brain while in
novices there was only left hemisphere activation. The authors reported that the activation
of right hemisphere could be linked to holistic processing of the stimuli. An attempt was
made to compare global and local temporal eye movement patterns of experts and novices
viewing dermatological images [32]. Their findings show that novices repeatedly fixate on
the same location while on the other hand experts do not tend to do this and their fixations
are also widely spread in time. The aforementioned scientific studies show that experts
indeed have a different viewing behavior when compared to novices and this is because they
are trained to do so.

2.3 The Role of Art Training in Aesthetic Appreciation

Viewing behavior is said to be affected by salient visual features and cognitive factors such
as task at hand [2, 3, 4]. This effect of saliency applies to the images of paintings where the
observer’s eye is quickly drawn towards recognizable figures, especially faces. People who
attend art schools involving classes for art history, painting restoration, drawing, recreating
art, etc. are trained to pay close attention to the aspects of the paintings beyond recognizable
salient objects. These aspects could be the historical context, styles of the paintings, etc.
Hence, artists and experts on art are expected to view paintings differently from novices.
This expectation potentially raises many questions to the scientists in the field of vision and
perception who are interested in understanding the relationship between art training and its
influence on viewing behavior. Some immediate questions one can ask are, how is perception
influenced with art training? Does this change the scanning of visual compositions and
the information being processed during perceptual analysis? Moreover, does this behavior
contribute to aesthetic judgments?

www.manaraa.com

CHAPTER 2. BACKGROUND 20

Although early research done by [2, 33] suggested that there are differences between art
experts and novices, the authors could not quantify the nature of these differences. Yarbus
was among the pioneering researchers who made an attempt to address this and conducted
experiments where he recorded the eye movements of his subjects viewing paintings but his
studies were mainly centered around questions: One, how is scanning behavior affected while
viewing faces? Two, given instruction how does viewing behavior change while inspecting
more complex scenes of paintings? Because of his work mainly surrounding these two
questions, Yarbus did not intend to quantify the differences in viewing behavior of people in
terms of expertise, specifically in the field of art. Nevertheless, Yarbus was able to show
how instructions significantly affected the viewing behavior of the subjects.

Since Buswell, Brandt, and Yarbus, the work done by [34] is believed to have come closest in
quantifying the role of eye movement patterns to evaluate visual compositions of artworks.
In this work, the author assumes that observers fixate on areas of images either to gain
knowledge or for pleasure. When the observer fixates to gain knowledge, the eye movements
are reported to be slower and deliberate than when they view for pleasure. The author was
able to compare visual compositions by calculating the spatial density of fixations spread
across the painting and argued that training could make viewers interested in evaluating
artworks’ visual compositions.

2.4 Methods for Analyzing Eye Movements

There are many approaches to analyze eye movement data, ranging from more straightforward
techniques evaluating fixation densities and length of saccades to more complex ones
involving machine learning. Some earlier methods include variance analysis and recurrence
quantification analysis. These previous approaches solely concentrated on fixation data
and ignored visual features extracted from images. The advantage of incorporating image
features along with fixation data would allow us to understand which areas of the image are
being fixated and how these fixated locations related to specific image features confined to
those locations.

More recently, with increasing interest in eye movement analysis, many powerful techniques
have been developed that explore the statistical properties of eye-movement patterns and
relate these with the characteristics of the visual stimulus. Some of these recent techniques
include algorithms such as multi-fixation pattern analysis (MFPA), Deep-Fix, SalGan,
Encoder-Decoder neural networks [23, 35, 36].

www.manaraa.com

CHAPTER 2. BACKGROUND 21

MFPA is a type of algorithm that takes in fixation locations and converts them to essential
features and classifies them. Previously, MFPA was used to infer a task which was given to
an observer while viewing scenes [6, 7, 23]. The algorithms under the family of MFPA take
an observer’s scanpath, a sequence of fixations as input, and uses it to infer traits such as
the task the observer is given. If the algorithms can make this inference above chance when
trained on an observer’s scanpath for specific tasks, then it suggests that the observer might
have a routine for scanpaths while accomplishing one or more tasks. In the next chapters,
we explain this algorithm in more detail.

Deep-Fix, SalGan, and Encoder-Decoder networks are models involving convolutional neural
networks to predict human eye fixations. These models are designed for predicting accurate
saliency maps and can help to understand human visual attention mechanisms. A saliency
map is obtained from an image showing unique quality of each pixel, and the attention
mechanism in humans can be defined as the “active direction of the mind to an object.”
Saliency models were first introduced by [28]. These maps are used to understand human
vision by simplifying the representation of where people looked at in an image into something
that is more meaningful and easier to analyze. Unlike classic saliency model described in [28]
which predicts saliency maps using hand-crafted features, these models hierarchically learn
features and predict saliency maps. For this research, we do not implement any of these
algorithms but, it could be of potential interest to consider these for future work.

2.5 Studies Differentiating Art Experts and Novices

Individual differences in viewing patterns have been researched and studied by carefully
examining the fixations of individuals who differ from one another in terms of background
and experience. Buswell was the first to study this. In his book [2], he speaks about how
people look at pictures. His findings show that most of people’s perception comes from
peripheral vision. Regardless of the intentions of the artists’, Buswell showed that people
follow a pattern of perception while viewing paintings. Since then, many researchers worked
along the same lines trying to differentiate art experts and novices while viewing images of
paintings [15, 16, 17, 18, 19, 14, 20, 21, 22].

It was found that gaze patterns by themselves could differentiate novices and experts
by fixation densities on aspects of images of paintings with less importance, where this
“importance" was defined by one expert artist and not the experimenters [37]. The authors of
this work define a total number of fixations on an image as fixation densities and performed
discriminant analysis to explain individual differences. When they showed paintings like

www.manaraa.com

CHAPTER 2. BACKGROUND 22

American Gothic, Mona Lisa, and The Last Supper, their subjects did not carefully examine
all aspects of these paintings. However, for other paintings, they examine the paintings in a
more detailed way. The authors relate this viewing behavior to the training of the expert
participants, i.e. the authors claim that the mentioned paintings were more familiar to their
expert subjects and hence the subjects did not find a need to examine them. Whereas, for
the other unfamiliar paintings they examined more carefully to understand the subtleties of
the paintings. It is unclear from their work as to what they mean by unfamiliar paintings
since they do not mention what they were.

In [15] fixation data of art experts and novices were examined to determine if altering
the balance of the original composition affected the viewing behavior as revealed by the
distributions of short and long fixation durations and which areas of the paintings received
greatest visual attention. They analyzed the areas in images of paintings, processed by
different and specific exploration defined by short- and long-gaze durations (i.e., fixations
with less than 300 ms and fixations with greater than 400 ms gaze durations). They showed
that novices fixate more on central and foreground areas. While, on the other hand, experts
tend to spend more time viewing background areas. Their findings stood by the idea that
novices focus more on the individual objects in an image and experts more on relationships
between the objects in general. This tells us that training affects viewing behavior in a way
that experts scrutinize the paintings much more than novices.

An attempt was made by [16] to differentiate between art experts and novices viewing only
realistic and abstract images of paintings. They did variance analysis that showed global/local
eye movement indices, were lower for local scanning by art experts who contributed to
more global viewing, particularly in abstract images. Novices, on the other hand, carried
their local scanpath patterns from realistic images on to abstract images. These indices
were calculated as a ratio of long and short amplitude saccades. The blink rate of expert
participants viewing abstract images was significantly lower when compared to realistic
images, showing an increase in visual effort while novices showed no difference in blink
rates.

The results from [17, 19] showed that the frequency and duration of fixations were identical
in both the groups of participants. However, the authors claim that the viewing patterns
were different in the two groups showing that novices spent more time on the areas of
paintings which have recognizable objects and human features when compared to experts.
The responses of art experts and novices were compared by [18] when the subjects were
shown slide-projected and computer-generated images of nine paintings, and it was concluded
that there was a significant difference in the subjects’ responses based on expertise.

www.manaraa.com

CHAPTER 2. BACKGROUND 23

Findings from [14] show that the viewing patterns of the experts changed with a change in
the level of abstraction of paintings. The authors from [20] evaluated the differences using
correlation coefficients (CCs) between fixations and saliency maps and show that the CCs
of experts were lower in free-viewing conditions, concluding that the viewing patterns of
experts depended on their expertise only under a free-viewing condition. Furthermore, it
has been shown that art experts are less driven towards low-level features [21].

Recently, [22] studied the difference between art experts and novices for various types of
paintings using Recurrence Quantification Analysis (RQA). RQA is a method that uses
fixation locations and durations to determine if there are any repetitions in the viewing
patterns of the subjects. To be more specific, this method is capable in evaluating if a
subject is fixating on the same areas of an image, and how often the subjects go back and
forth between these locations. The results from [22] suggest that novices tend to have
more consecutive fixations, i.e. some repetitive gaze patterns while viewing paintings when
compared to experts. This study also confirms that expertise, instructions, and the type of
paintings influence the viewing patterns of the participants.

2.6 Machine Learning to Analyze Eye Movements

While all the studies mentioned above and their findings act as a background for our research,
we build our work on the conclusions of [22] and [21] by modifying multi-fixation pattern
analysis (MFPA) [23] to include CNN features. MFPA is a family of machine learning
algorithms for making inferences about people from their gaze patterns. MFPA and related
approaches have been widely used to make inferences from subjects, but previous approaches
only use gaze position (x, y) information with duration and temporal order and not the
visual features in the image [38, 7, 39, 6].

To address this, we combined MFPA with a deep CNN. Instead of converting a trial’s 2-D
fixation positions into Fisher Vectors, we extracted image features surrounding the fixations
using a deep CNN and turned them into Fisher Vectors for a trial. We call this approach
MFPA-CNN. If MFPA algorithms can make an inference above chance, this suggests that
there are differences between scanpaths for the variable of interest [23].

In [23], MFPA was used to determine whether people had different scanpath routines for
making judgements about faces. Here, we use MFPA to determine whether art experts and
novices look at art in the form of digital paintings differently under two different conditions:
instructed and non-instructed. While CNN’s have been previously used to recognize and

www.manaraa.com

CHAPTER 2. BACKGROUND 24

classify objects from paintings [40, 41], this work goes the extra step to study the human
perception of digital paintings as opposed to natural digital images.

If MFPA can infer whether the viewer is an art expert or novice, then we can conclude that
art experts have different viewing patterns than novices. Likewise, if we can differentiate
instructed from non-instructed participants, then we can conclude that instructions indeed
influence the viewing behavior of our subjects. By comparing the models trained on low-
and high-level image features, we can gain additional insights about differences seen with
different features. If there’s difference seen with low-level features, we could argue that our
subjects’ vision is more driven towards low-level image features like edges, color, intensity,
etc. In contrast if difference exists even with high-level features, we can argue that the
subject’s vision is driven towards high-level features of an image like faces, objects, etc. Note
that we call our model trained on low-level features as MFPA-CNN(L) and with high-level
features as MFPA-CNN(H).

www.manaraa.com

Chapter 3

Study Description

3.1 Experiment Design

[22] [22] did the data collection. They followed a 2x2x5 between-subjects experimental
design with two expertise levels (experts and novices), two instruction levels (free viewing
and a follow-up questionnaire instruction), and five painting categories. The art expert
group consisted of 24 students and faculty members, who were studying and/or teaching art
and art-related disciplines. The novice group also consisted of 24 students and faculty from
various majors with no background in visual art studies and those who were not specifically
interested in paintings or any art form. The participants for both groups were recruited
from Rochester Institute of Technology and included both female and male genders. The
participants were screened for normal color vision and normal or corrected to normal visual
acuity. The study has received RIT IRB approval.

3.2 Stimuli and Materials

The stimuli consisted of 60 high-resolution digital images of fine art paintings representing
five different categories: Abstract, Landscape, Portrait, Cityscape, and Stilllife. Each
category had 12 paintings. The SMI Red-250 eye tracker was used with the dual display
setup where the images were shown on the full screen of one computer. The second computer
was used to run the SMI software as shown in Figure 3.1.

25

www.manaraa.com

CHAPTER 3. STUDY DESCRIPTION 26

Figure 3.1: Pictorial representation of the experimental set-up.

3.3 Procedure

The participants sat at the distance of 60cm from a 50.8cm (20") display where the images
were presented on a 1680x1050 resolution screen. Before beginning the experiment, the
participants were informed that their eye movements would be recorded. The participants
from the instructed group were told that they would be given a questionnaire at the end of
the experiment on their understanding and impressions of paintings while those from the
non-instructed group were asked to view the images freely. The participants were told to
view images as long as they wanted and to say “next" when they wanted to proceed to the
next painting. The images were displayed in a randomized order for every participant.

www.manaraa.com

Chapter 4

Methods

Figure 4.1: From left to right, we show example scanpaths from one subject of each group.
The first row represents the scanpath of an expert, instructed and non-instructed. Similarly,
the second row represents the scanpath of a novice, instructed and non-instructed.

27

www.manaraa.com

CHAPTER 4. METHODS 28

Figure 4.1 consists of sample images from our experiment. The size of the circles connecting
the scanpaths depicts the amount of time a subject fixated in that particular location.

As part of our analysis, we used two MFPA algorithms explained in [23]. The first one is the
summary statistics method. The second one uses the spatial characteristics of the scanpath
and is based on Gaussian Mixture Models and Fisher vectors. The output obtained from
these methods are then fed into a classifier for the classification of our subjects. These MFPA
methods were then modified and extended to use a deep Convolutional Neural Network
(CNN), and a comparison was made to see how MFPA and the extended MFPA performed
on our data.

In the following sections, we start with a detailed explanation of algorithms we used from
[23] followed by our approach to extend those algorithms.

4.1 The Summary Statistics Method

The summary statistics (SS) from [23] method acts as a baseline for our method of analysis.
The input to this method is the mean number of fixations and fixation duration. Considering
a trial with T fixations, we can mathematically represent its information as;

Xtrial =
[
x1 x2 · · · xT

]
=

x1 x2 · · · xT
y1 y2 · · · yT
d1 d2 · · · dT

 . (4.1)

The columns in the matrix represent the fixation coordinates and duration. The summary
statistics method converts the mean number of fixations and durations into a 2-dimensional
feature vector which is represented as

φss(Xtrial) =
[
T 1

T

∑T
t=1 dt

]T
. (4.2)

These feature vectors are for each subject viewing each painting which are then fed into a
classifier for classifying our subjects.

www.manaraa.com

CHAPTER 4. METHODS 29

4.2 Method based on Gaussian Mixture Model and Fisher
Vectors

In machine learning, most classifiers require all input feature vectors to have a fixed-
dimensionality. However, the number of fixations obtained from each trial varies. The reason
behind turning a trial’s fixation features into Fisher Vectors is to overcome this challenge
and to enable MFPA algorithms to capture diagnostic information.

We implemented an algorithm as described in [23] where the fixation locations (x,y) were
converted to Fisher Vectors. An image representation obtained by pooling of local image
features is called the Fisher Vector. In problems related to classification, Fisher Vectors
are usually used as global image descriptors. Fisher Vector encoding is done by fitting
a Gaussian Mixture Model (GMM). p(X|Θ) is the parametric generative model trained
for Fisher Vectors, where X is the training data and Θ are the model’s parameters. The
dimension of this representation is Θ dependent and it changes with the change in the
number of parameters in Θ.

We used Scikit Learn to fit a GMM and compute Fisher Vectors [42]. A GMM is said to be
composed of K Gaussians, which is mathematically represented as

p(x) =
K∑
k=1

wkN (x|µk,Σk). (4.3)

Here wk are the mixture weights and N (x|µk,Σk) are the densities of Gaussians in a mixture,
which have mean (µk) and diagonal covariance (Σk) of their own. Means and covariances
of Gaussians are used to construct Fisher Vectors. These µk and vk for each k mixture
component is given by

µk =
1

T
√
wk

T∑
t=1

qtkΣ−1
k (xt − µk) (4.4)

and

vk =
1

T
√

2wk

T∑
t=1

qtk[(Σ−1
k (xt − µk))o(Σ−1

k (xt − µk))− 1] (4.5)

www.manaraa.com

CHAPTER 4. METHODS 30

respectively, where T represents the total number of fixations in a trial, o is the Hadamard
product, 1 is a vector of ones, and qtk is the assignment strength given to each mixture
component’s fixation features xt by a GMM. These µk and vk vectors are then concatenated
to create an unnormalized GMM Fisher Vector which is given by the equation,

φGMM (Xtrial) =
[
u1 , v1, · · · , uk, vk

]T
. (4.6)

While doing this, the number of clusters for GMM were chosen between 1 and 5. Finally,
before feeding the Fisher Vectors as an input to the classifier, it is necessary to do the
two-step normalization process. This normalization process is critical to achieving state-of-
the-art performance for classification as stated in [43]. The two steps are: (I) Sign-preserving
square root of the features taken i.e., f(z) = sign(z)

√
|z | and is applied to the features

element-wise. (II) The features are then converted to unit length by dividing with their
Euclidean norm. The dimensionality of the Fisher vectors is then reduced by using Principal
Component Analysis (PCA).

4.3 Methods Combining MFPA with a Deep CNN

We modified the original MFPA algorithm from [23] to use visual features extracted using a
deep CNN. The idea behind using a CNN with MFPA is to see if there are any differences
in the viewing behavior of our subjects when image features surrounding fixated regions
are taken into consideration. We use ResNet, a type of CNN for feature extraction [44]. In
the next sections, we briefly discuss ResNet followed by our two proposed approaches for
feature extraction.

ResNet

Since the development of AlexNet, the state-of-the-art CNN architecture is going deeper
and deeper. With only five convolutional layers in AlexNet to 16 and 19 layers in VGG,
Resnet was designed to go as deep as 50, 100 and 150 layers. It is a known fact that an
off-the-shelf CNN model can be used either as a classifier or as a feature extractor. We use
a ResNet-50 layer neural network [45] pre-trained on ImageNet dataset [44]. Since this is
used for feature extraction, we remove the top dense layers and extract features from a layer
of our choice. Dense layers are classic fully-connected layers in a neural network which are
removed when using a pre-trained neural network as a feature extractor.

www.manaraa.com

CHAPTER 4. METHODS 31

Figure 4.2: Schematic representation of our method. (a) Original image with some fixations.
(b) n× n image patches extracted from areas surrounding each fixation. (c) 50 layer deep
convolutional neural network. (d) Flowchart of the modified MFPA algorithm based on
Fisher Vectors extracted from GMM.

4.3.1 Feature Extraction From Image Patches

Figure 4.2 shows a schematic representation of our first approach in extending MFPA and
Figure 4.3 is a flowchart representing the methodology behind our analysis.

As it can be seen, we extract image patches of varied sizes surrounding the fixation locations
(x,y). The image patch sizes we consider are 9x9, 17x17, 34x34, and 68x68 in pixels. These
sizes correspond to 0.5, 1, 2, and 4-degree visual angle respectively. We do this to see if
there are any differences in viewing behavior of our subjects when we alter the algorithm to
consider the visual angle.

What is a Visual Angle?

Whether a visual stimulus is viewed by a human or a monkey in the laboratory, the size
of this visual stimulus is critical. In the studies related to human vision, there is a crucial
distinction between the size of an object in the real world and its size when projected onto
the retina. The size of an object in the real world can be measured in millimeters, inches,

www.manaraa.com

CHAPTER 4. METHODS 32

Figure 4.3: A flowchart representing our methodology.

meters, etc. The size of the same object projected on the retina is measured in degrees of
the visual angle, a concept that incorporates both the size of an object and its distance
from the observer. A good guideline is that, if we held our thumb at arm’s length as seen in
the Figure 4.4, it is said that the image of the thumb approximately subtends a 2-degree
visual angle on our retina.

The idea behind using patches of different sizes corresponding to different visual angles,
is to be able to extract low- and high-level features from the patches. We used the Deep
Learning library Keras to extract the CNN image features [46]. The low-level image features
were extracted from the first convolutional layer while the high-level features were extracted
from the last convolutional layer of the network. We obtained (m× n) CNN image features

www.manaraa.com

CHAPTER 4. METHODS 33

Figure 4.4: Pictorial representation of the concept - Visual Angle.

where m represents the number of image patches, and n represents the flattened dimension
of our image features. These features were then converted into Fisher Vectors (FV) before
feeding into a classifier.

4.3.2 Feature Extraction From Fixation Locations

In our second approach of modifying the original MFPA algorithm, we feed all images in
the dataset with fixations to the ResNet50 layer network pre-trained on ImageNet and
extract features from the last layer of the network. The reason behind doing this is that
we extract features directly from fixation locations. This technique avoids all the features
surrounding the fixation locations and helps us understand the features confined to the
locations of interest. In our first approach, the patches extracted based on visual angle are
fairly small, and this can prevent the CNN from extracting high-level image features as
those are associated with semantically meaningful characteristics such as objects and faces
which would not be fully contained in the patches extracted. Post feature extraction, we
follow the same steps as explained in previous approaches as explained in Section 4.2, i.e.
these CNN features are converted to Fisher Vectors and then fed into a classifier.

www.manaraa.com

CHAPTER 4. METHODS 34

4.4 Classification

Authors from [23] used a Support Vector Machine (SVM) as a classifier. When we used SVM
for classification, it happened to be the bottleneck on our dataset. It took approximately 2
hours to process one fold of a cross-validation step when we used SVM as our classifier. So,
to optimize computation, we chose to use a Softmax classifier over the SVM.

4.4.1 Softmax Classifier

The generalized binary form of logistic regression is a softmax classifier [47]. Just like in
hinge loss or squared hinge loss, the mapping function for softmax is defined as the one that
takes an input set of data x and maps them to the output class labels with a simple dot
product of x and weight matrix W:

f (xi,W) = Wxi,

But, these scores are interpreted as unnormalized log probabilities for each class label and
hence hinge loss is replaced with cross-entropy loss that is defined as,

Li = −log
exp

(
fyi
)∑

j exp (fj)
,

Where fj means the j-th element of the vector of class scores f. The mean of Li overall
training examples together with a regularization term R(W) is the full loss for the dataset.
The function -

softmax (a) =
exp (a)∑K

j=1 exp (aj)
,

is called the Softmax function where the vector of arbitrary real valued scores is taken and
squashed to a vector of values between zero and one that sum to one. The softmax classifier
is hence said to minimize the cross-entropy between the estimated class probabilities and
the true distribution.

www.manaraa.com

CHAPTER 4. METHODS 35

4.4.2 Softmax vs SVM

In addition to the computational efficiency, the advantage behind using a Softmax classifier
is that it provides “probabilities” for each class while the SVM computes scores for the
classes that are not easy to interpret. For example, given an image, the SVM classifier might
give us scores [10.5, 0.6, -21.0] for the classes “bird,” “skateboard,” and “ship.” The softmax
classifier can instead compute the probabilities of the three labels as [0.9, 0.09, 0.01], which
allows us to interpret its confidence in each class.

We attempted to differentiate novices from experts, instructed from non-instructed subjects
and all the four groups. We did 2-way classification to differentiate experts from novices
and instructed from non-instructed subjects, whereas 4-way classification was performed to
differentiate all four groups. We performed hold-one-out cross-validation for all our conditions
to see how expertise and instructions alter the viewing patterns of the subjects.

www.manaraa.com

Chapter 5

Results

We compared experts, novices, instructed, and not-instructed subjects, and all the four
groups, and reported the classification accuracy calculated from all methods in Tables 5.1,
5.2 and 5.3.

Table 5.1 holds the results obtained from the summary statistics and the original MFPA
model. As it can be seen we received slightly above chance results when these methods were
implemented on our data.

Table 5.2 holds the results obtained from algorithm-1, i.e. our proposed method involving
feature extraction from patches based on the visual angle. Here, MFPA-CNN(L) and
MFPA-CNN(H) are the results obtained from our method using low- and high-level CNN
image features respectively. The results obtained from this method were better than the
original MFPA model but cannot be considered as significantly superior to the earlier
approach.

Table 5.3 holds the results obtained from our second proposed method where the entire
images were analyzed using CNN and the CNN features were extracted from the coordinates
of the fixation locations. As it can be seen, this approach resulted in a significantly better
classification accuracy for all our comparisons.

Figures 5.1, 5.2 represent the confusion matrices for all our methods under different conditions,
i.e. experts vs. novices, instructed vs. not-instructed and the comparison between all four
groups.

36

www.manaraa.com

CHAPTER 5. RESULTS 37

Table 5.1: Classification accuracy with their 95% confidence intervals obtained from the
original MFPA methods after hold-one-out cross-validation.

SS (%) MFPA (%)

Exp vs Nov (2-way) 51± 0.11 55± 0.53
Inst vs Non-inst (2-way) 53± 0.26 57± 0.31
Groups (4-way) 29± 0.39 30± 0.45

Table 5.2: Classification accuracy with their 95% confidence intervals obtained from our
algorithm-1 involving patches of sizes 9x9, 17x17, 34x34, and 68x68 after hold-one-out
cross-validation.

MFPA-CNN(L) (%) MFPA-CNN(H) (%)

Exp vs Nov (2-way) 58± 0.16 56± 0.39
Inst vs Non-inst (2-way) 59± 0.23 58± 0.23
Groups (4-way) 30± 0.31 30± 0.57

Table 5.3: Classification accuracy with their 95% confidence intervals obtained from our
algorithm-2 after hold-one-out cross-validation.

MFPA-CNN(No patches) (%)

Exp vs Nov (2-way) 67± 0.93
Inst vs Non-inst (2-way) 79.5± 0.85
Groups (4-way) 36.7± 0.96

www.manaraa.com

CHAPTER 5. RESULTS 38

Figure 5.1: In the figure, the first column represents the confusion matrices for comparison
between experts and novices, the second column for instructed and non-instructed subjects
and the last column represents confusion matrices for all our four groups. Rows represent
the methods summary statistics and the original MFPA, respectively. Columns of each
confusion matrix represent the predicted classes while the rows represent the ground-truth
classes.

Figure 5.2: In the figure, the first column represents the confusion matrices for comparison
between experts and novices, the second column for instructed and non-instructed subjects
and the last column represents confusion matrices for all our four groups. Rows represent
the methods MFPA-CNN(L) and MFPA-CNN(H), respectively. Columns of each confusion
matrix represent the predicted classes while the rows represent the ground-truth classes.

www.manaraa.com

CHAPTER 5. RESULTS 39

Confusion matrices allow us to evaluate the quality of the output of classifiers. The diagonal
elements represent the number of instances for which the predicted label is equal to the true
label, while off-diagonal elements are those that are misclassified. The higher the diagonal
values of the confusion matrix the better the performance of the classifier, expressed in the
number of correct predictions. In Figures, the color coding corresponds to the number of
correctly classified or misclassified instances. For example, in Figure 5.1, the top matrix in
the first column of the figure shows that the novices were almost always misclassified as
experts, which is designated by the deep blue color of the block in the first column, second
row of the matrix. Experts, on the other hand, were frequently correctly classified, which is
expressed by a lighter shade of blue. The second column of this matrix shows that very few
participants were classified as novices resulting in substantial number of misclassifications
for the novices.

www.manaraa.com

Chapter 6

Discussion

The data represented in Table 5.1, 5.2, 5.3 and Figures 5.1,5.2 show that all algorithms
produces an above chance classifications based on accuracy and confidence intervals with
the varying performance levels. The above chance results for SS and the original MFPA
methods (see Table 5.1) show that there are simple temporal differences when we compare
experts and novices with and without instructions and between all the four groups, i.e.
experts, novices, instructed and not-instructed.

In contrast, Table 5.2 and 5.3 demonstrate a better differentiation between viewers’ gaze
patterns using our approaches when compared to results obtained using the summary
statistics and the original MFPA method. One aspect to notice from all the tables is,
irrespective of the method, the results show a better differentiation of the viewing behavior
when the comparison is made between the instructed and the non-instructed conditions.
However, an improved performance of our methods mean that although the locations
only data can differentiate between instructed and non-instructed subjects, image features
provide an important information that yields considerably better results for the classification
purposes between these two categories of viewing conditions.

We obtained an above chance results under all our conditions for both low- and high-level
image features (see Table 5.2). The size of the image patch surrounding the fixation location
did not make any effect on the results obtained. The classification accuracy remained
constant with all our patch sizes, 9x9, 17x17, 34x34, and 68x68 pixels. We can thus say
that the difference in the features extracted based on the visual angle surrounding the
fixation locations do not produce a significant effect on the classification. One possible
explanation of this result is that the main differentiating features remain the same in all these

40

www.manaraa.com

CHAPTER 6. DISCUSSION 41

patches regardless of the size. Also, the results obtained when high-level image features were
extracted is slightly lower when compared to those when low-level features were extracted.
The reason behind this could be that the image patches are so tiny that they probably do
not include any high-level image features such as faces, eyes. and recognizable objects, and
the added features from the larger patches introduce noise from the classification standpoint.
Again, these results could also mean that instructions have a larger affect on perception
when compared to expertise: although slightly, the results obtained under the instructed
condition is better than when expertise is taken into consideration.

In [16], the authors hypothesize that if it can be shown that viewing differences exist in
seeing low- and high-level image features, it could potentially mean that novices get attracted
to low-level and experts to high-level image features. Hence, based on our results, and
discussions from [16, 21], we can argue that novices data contributed to the significant
increase in classification accuracy obtained when low-level features were used, and experts’
when high-level features were used. This result favors the explanation that the gaze-patterns
of novice participants are influenced relatively more by bottom-up factors and gaze patterns
of experts are affected more by top-down factors. We can thus support [16, 21] and
hypothesize that novices tend to get attracted more towards low-level image features such
as color, edges, etc. whereas experts get attracted to high-level features, i.e. areas of an
image with more semantically relevant information.

Although, we can hypothesize and support the findings of previously conducted research,our
results are not yet sufficient to concretely say how viewing behavior is affected because
expertise or instructions. Despite achieving better accuracy than the original model, more
work is needed to interpret the results in terms of specific visual characteristics.

Comparing our two methods with and without patch analysis, a substantially better result
was obtained for all conditions when we extracted features directly from the fixation locations
(see Table 5.3). In this approach, the features are confined to the fixation locations and
therefore, do not include the surrounding information. The advantage of this method over
the patch-based approach is in that it reduces confusions that can be caused by two fixations
very close to each other. For example, in the case of two subjects who view an image and
have some fixations very close to each other, patch extraction will include surrounding
features of the location that could overlap. In this case, there is a high chance for the
algorithm to get confused. However, this will not be the case with extracting features directly
from the fixation location. This is potentially the reason behind the significantly better
results we obtained from the method involving feature extraction directly from fixation
locations of the image.

www.manaraa.com

CHAPTER 6. DISCUSSION 42

To gain more insight about our proposed methods, we computed confusion matrices. The
confusions indicate that the subjects follow or have more or less similar and generic viewing
patterns while viewing paintings. Figure 5.1 represents the confusion matrices obtained from
the summary statistics and the original MFPA method and Figure 5.2 represent confusion
matrices obtained from our approach where we extracted features from patches surrounding
fixation locations. Features that are confused by the original MFPA methods from [23]
and our method indicate that the viewing patterns of these subjects are more similar than
others. It can be seen that our method significantly reduced the confusions between the
experts and novices when compared to those caused by methods implemented from [23],
allowing better classification.

Our results also confirm that not just the expertise alone but instructions as well affect
viewing behavior of the subjects. Moreover, our findings show that image features obtained
from the fixation locations significantly influence the classification accuracy and are more
critical than the fixation locations themselves. However, based on our approach of extracting
features based on the visual angle, we could only show that the differences exist in the
viewing patterns of novices and experts associated with viewing low- and high-level features
of images of paintings but could not determine what features the subjects were focusing on.
We demonstrate that our method based on the feature extraction directly from the locations
of interest is significantly better and reliable over the other proposed methods.

www.manaraa.com

Chapter 7

Summary

7.1 Conclusions

This thesis discusses the early research and recent advances in visual perception of art
by experts and novices and how their eye movements differ. We conducted experiments
to determine if there are any differences in gaze patterns of experts and novices viewing
images of paintings using machine learning techniques. We proposed two methods that
modified the existing Multi-Fixation Pattern Analysis algorithm to include visual features
extracted using a Convolutional Neural Network. Both proposed methods resulted in
improved classification accuracy. The second method involving feature extraction directly
from the fixation locations achieved significantly better performance in comparison to the
first method where the features were extracted from image patches. Based on the results
the proposed methods can be considered as superior algorithms to the original MFPA
algorithms [23]. We can conclude from our findings that image features corresponding to
fixation locations provide more meaningful information about the subjects than the locations
themselves.

Our results demonstrate that expertise in the field of art and instructions have significant
effects on the gaze patterns of viewers. We support the recent work done by [22, 21] and
confirm that there is definitely a different viewing pattern that the expert and novice subjects
follow while viewing paintings. We successfully differentiated experts from novices when
both low- and high-level CNN image features were used and when features were extracted
directly from the fixation locations. The influence of instruction was found to have a larger

43

www.manaraa.com

CHAPTER 7. SUMMARY 44

effect on subjects’ viewing behavior in comparison to the influence of expertise as evident
from our classification results.

7.2 Limitations

One important limitation is that the patch sizes we used were too small to capture meaningful
high-level features. This could explain the lower classification accuracy obtained for high-level
features from the CNN.

As another limitation, we could not determine if saliency plays any role in the differences
observed in our experiment because our algorithms were not designed to address saliency.
However, it is possible to explore this area with better machine learning models involving
neural networks.

7.3 Applications and Future Work

In the past, researchers have used algorithms similar to the summary statistics method
successfully to predict Schizophrenia, Attention Deficit Hyper Activity Disorder, and Fetal
Alcohol Spectrum Disorder [38, 39]. Our extended MFPA algorithms could provide an
improvement in screening for these conditions. The early MFPA algorithms could also find a
person’s identity given a task, our proposed methods in combination with the original MFPA
can be used to infer other traits as well. For example, our extended MFPA algorithms could
be used to decode the mental state of the subjects.

The future work can further investigate on what image features different groups of observers
concentrate when they are viewing art images. One potential approach could use an encoder-
decoder network trained on a dataset with fixations as proposed by [36] to predict saliency
and visualize and interpret the meaning of the CNN features. This will allow to identify
whose vision is more driven towards specific image characteristics and attributes. We believe,
our work has wide ranging implications for diverse fields such as imaging and art education in
multiple learning contexts, and could also be of particular value to museum curation.

www.manaraa.com

Bibliography

[1] iMotions. Eye tracker visualizations. URL:https://imotions.com/blog/7-terms-metrics-
eye-tracking.

[2] Guy Thomas Buswell. How people look at pictures: a study of the psychology and
perception in art. 1935.

[3] Alfred L Yarbus. Eye movement and vision, trans. b. haigh. ed: Plenum Press, New
York, 1967.

[4] Marianne DeAngelus and Jeff B Pelz. Top-down control of eye movements: Yarbus
revisited. Visual Cognition, 17(6-7):790–811, 2009.

[5] Benjamin W Tatler, Nicholas J Wade, Hoi Kwan, John M Findlay, and Boris M
Velichkovsky. Yarbus, eye movements, and vision. i-Perception, 1(1):7–27, 2010.

[6] Michelle R Greene, Tommy Liu, and Jeremy M Wolfe. Reconsidering yarbus: A failure
to predict observers'task from eye movement patterns. Vision research, 62:1–8, 2012.

[7] Ali Borji and Laurent Itti. Defending yarbus: Eye movements reveal observers’ task.
Journal of vision, 14(3):29–29, 2014.

[8] K-H Schlingensiepen, FW Campbell, GE Legge, and TD Walker. The importance of
eye movements in the analysis of simple patterns. Vision Research, 26(7):1111–1117,
1986.

[9] Susana Martinez-Conde, Stephen L Macknik, and David H Hubel. The role of fixational
eye movements in visual perception. Nature reviews neuroscience, 5(3):229, 2004.

[10] David Brieber, Helmut Leder, and Marcos Nadal. The experience of art in museums:
An attempt to dissociate the role of physical context and genuineness. Empirical Studies
of the Arts, 33(1):95–105, 2015.

45

www.manaraa.com

BIBLIOGRAPHY 46

[11] Paul Locher. Contemporary experimental aesthetics: State of the art technology.
i-Perception, 2(7):697–707, 2011.

[12] Matthew Pelowski and Fuminori Akiba. A model of art perception, evaluation and
emotion in transformative aesthetic experience. New Ideas in Psychology, 29(2):80–97,
2011.

[13] Johan Wagemans. Towards a new kind of experimental psycho-aesthetics? reflections
on the parallellepipeda project. i-Perception, 2(6):648–678, 2011.

[14] Elina Pihko, Anne Virtanen, Veli-Matti Saarinen, Sebastian Pannasch, Lotta Hirvenkari,
Timo Tossavainen, Arto Haapala, and Riitta Hari. Experiencing art: the influence of
expertise and painting abstraction level. 2011.

[15] Calvin F Nodine, Paul J Locher, and Elizabeth A Krupinski. The role of formal
art training on perception and aesthetic judgment of art compositions. Leonardo,
26(3):219–227, 1993.

[16] WH Zangemeister, Keith Sherman, and Lawrence Stark. Evidence for a global scan-
path strategy in viewing abstract compared with realistic images. Neuropsychologia,
33(8):1009–1025, 1995.

[17] Stine Vogt. Looking at paintings: patterns of eye movements in artistically naïve and
sophisticated subjects. Leonardo, 32(4):325–325, 1999.

[18] Paul J Locher, Jeffrey K Smith, and Lisa F Smith. The influence of presentation
format and viewer training in the visual arts on the perception of pictorial and aesthetic
qualities of paintings. Perception, 30(4):449–465, 2001.

[19] Stine Vogt and Svein Magnussen. Expertise in pictorial perception: eye-movement
patterns and visual memory in artists and laymen. Perception, 36(1):91–100, 2007.

[20] Naoko Koide, Takatomi Kubo, Tomohiro Shibata, and Kazushi Ikeda. Visual fixation
patterns of artists and novices in abstract painting observations. In Signal and In-
formation Processing Association Annual Summit and Conference (APSIPA), 2013
Asia-Pacific, pages 1–4. IEEE, 2013.

[21] Naoko Koide, Takatomi Kubo, Satoshi Nishida, Tomohiro Shibata, and Kazushi Ikeda.
Art expertise reduces influence of visual salience on fixation in viewing abstract-paintings.
PloS one, 10(2):e0117696, 2015.

www.manaraa.com

BIBLIOGRAPHY 47

[22] Elena Fedorovskaya, Sanjana Kapisthalam, and Yingtong Bu. Gaze patterns in art
viewing and their dependencies on expertise and image characteristics. 2017.

[23] Christopher Kanan, Dina NF Bseiso, Nicholas A Ray, Janet H Hsiao, and Garrison W
Cottrell. Humans have idiosyncratic and task-specific scanpaths for judging faces.
Vision research, 108:67–76, 2015.

[24] Keith Rayner. Eye movements in reading and information processing. Psychological
bulletin, 85(3):618, 1978.

[25] David Noton and Lawrence Stark. Scanpaths in eye movements during pattern percep-
tion. Science, 171(3968):308–311, 1971.

[26] David Noton and Lawrence Stark. Eye movements and visual perception. Scientific
American, 1971.

[27] Anne M Treisman and Garry Gelade. A feature-integration theory of attention. Cognitive
psychology, 12(1):97–136, 1980.

[28] Laurent Itti, Christof Koch, and Ernst Niebur. A model of saliency-based visual
attention for rapid scene analysis. IEEE Transactions on pattern analysis and machine
intelligence, 20(11):1254–1259, 1998.

[29] Derrick Parkhurst, Klinton Law, and Ernst Niebur. Modeling the role of salience in the
allocation of overt visual attention. Vision research, 42(1):107–123, 2002.

[30] Harold L Kundel, Calvin F Nodine, Elizabeth A Krupinski, and Claudia Mello-Thoms.
Using gaze-tracking data and mixture distribution analysis to support a holistic model
for the detection of cancers on mammograms. Academic radiology, 15(7):881–886, 2008.

[31] Merim Bilalić, Robert Langner, Rolf Ulrich, and Wolfgang Grodd. Many faces of
expertise: fusiform face area in chess experts and novices. Journal of Neuroscience,
31(28):10206–10214, 2011.

[32] Preethi Vaidyanathan, Jeff Pelz, Cecilia Alm, Pengcheng Shi, and Anne Haake. Re-
currence quantification analysis reveals eye-movement behavior differences between
experts and novices. In Proceedings of the Symposium on Eye Tracking Research and
Applications, pages 303–306. ACM, 2014.

[33] Herman F Brandt. The psychology of seeing, new york: Philosophical library, 1945.

www.manaraa.com

BIBLIOGRAPHY 48

[34] François Molnar. About the role of visual exploration in aesthetics. In Advances in
intrinsic motivation and aesthetics, pages 385–413. Springer, 1981.

[35] Junting Pan, Cristian Canton Ferrer, Kevin McGuinness, Noel E O’Connor, Jordi
Torres, Elisa Sayrol, and Xavier Giro-i Nieto. Salgan: Visual saliency prediction with
generative adversarial networks. arXiv preprint arXiv:1701.01081, 2017.

[36] Sen He, Nicolas Pugeault, Yang Mi, and Ali Borji. What catches the eye? visualizing
and understanding deep saliency models. arXiv preprint arXiv:1803.05753, 2018.

[37] James R Antes and Arlinda F Kristjanson. Discriminating artists from nonartists by
their eye-fixation patterns. Perceptual and motor Skills, 73(3):893–894, 1991.

[38] Philip J Benson, Sara A Beedie, Elizabeth Shephard, Ina Giegling, Dan Rujescu, and
David St Clair. Simple viewing tests can detect eye movement abnormalities that
distinguish schizophrenia cases from controls with exceptional accuracy. Biological
psychiatry, 72(9):716–724, 2012.

[39] Po-He Tseng, Ian GM Cameron, Giovanna Pari, James N Reynolds, Douglas P Munoz,
and Laurent Itti. High-throughput classification of clinical populations from natural
viewing eye movements. Journal of neurology, 260(1):275–284, 2013.

[40] E. J. Crowley and A. Zisserman. In search of art. In Workshop on Computer Vision
for Art Analysis, ECCV, 2014.

[41] E. J. Crowley and A. Zisserman. The state of the art: Object retrieval in paintings
using discriminative regions. In British Machine Vision Conference, 2014.

[42] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[43] Florent Perronnin, Jorge Sánchez, and Thomas Mensink. Improving the fisher kernel
for large-scale image classification. Computer Vision–ECCV 2010, pages 143–156, 2010.

[44] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on, pages 248–255. IEEE, 2009.

www.manaraa.com

BIBLIOGRAPHY 49

[45] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 770–778, 2016.

[46] François Chollet et al. Keras: Deep learning library for theano and tensorflow. URL:
https://keras. io/k, 2015.

[47] CS231. Softmax classifier. URL:http://cs231n.github.io/linear-classify/softmax.

www.manaraa.com

Chapter 8

Appendix

8.1 Python Codes

8.1.1 Dataset Manager

fromfromfrom collections importimportimport deque
fromfromfrom functools importimportimport partial
importimportimport fixationanalyzer as fa
fromfromfrom fixationanalyzer importimportimport Participant
fromfromfrom fixationanalyzer importimportimport FeatureExtractor
fromfromfrom itertools importimportimport chain
fromfromfrom math importimportimport floor
importimportimport numpy as np
importimportimport csv

classclassclass DatasetManager(objectobjectobject):
"""
Must Modify To Verify Dataset Integrity
Verify that all participants see all paintings

"""
defdefdef __init__(self ,

50

www.manaraa.com

CHAPTER 8. APPENDIX 51

fixation_filename ,
training_fraction =.7,
num_chunks =10,
classification_type=’exp_v_nov ’,
):

self.fixation_filename = fixation_filename
self.training_fraction = training_fraction
self.num_chunks = num_chunks
self.classification_type = classification_type

self.participants =
self.__process_input(self.fixation_filename ,self.num_chunks)

self.data_chunks , self.label_chunks =
self.__chunk_dataset(self.participants)

self.num_rotations = 0

defdefdef get_train_test(self):
split_index = floor(self.training_fraction *

self.num_chunks)

train_participants = chain (*(self.data_chunks[i]
forforfor i ininin rangerangerange(split_index)))

test_participants = chain (*(self.data_chunks[i] forforfor
i ininin rangerangerange(split_index ,self.num_chunks)))

train_labels = listlistlist(chain(*(self.label_chunks[i]
forforfor i ininin rangerangerange(split_index))))

test_labels = listlistlist(chain(*(self.label_chunks[i]
forforfor i ininin rangerangerange(split_index ,self.num_chunks))))

train_data = [p.fixation_data forforfor p ininin
train_participants]

test_data = [p.fixation_data forforfor p ininin
test_participants]

www.manaraa.com

CHAPTER 8. APPENDIX 52

returnreturnreturn train_data ,train_labels , test_data ,
test_labels

defdefdef rotate(self):

ififif self.num_rotations > self.num_chunks:
raiseraiseraise RuntimeError("You␣can’t␣rotate␣your␣

dataset␣more␣times␣({0})␣than␣there␣are␣
chunks␣
({1})!.".formatformatformat(self.num_rotations ,self.num_chunks))

self.data_chunks.rotate ()
self.label_chunks.rotate ()
self.num_rotations += 1

defdefdef __chunk_dataset(self ,participants):
ififif self.classification_type == ’exp_v_nov ’: #exp vs

nov
defdefdef _assessment_func(participant):

returnreturnreturn participant.expert

elifelifelif self.classification_type == ’inst_v_ninst ’:
#inst vs Non
defdefdef _assessment_func(participant):

returnreturnreturn participant.instructed

elifelifelif self.classification_type == ’four’: #4-way
defdefdef _assessment_func(participant):

truth_table = [[0,1],
[2,3]]

returnreturnreturn
truth_table[participant.expert][participant.instructed]

label_separated = [[] ,[]] ififif
self.classification_type != ’four’ elseelseelse
[[] ,[] ,[] ,[]]

www.manaraa.com

CHAPTER 8. APPENDIX 53

forforfor p ininin participants:
lbl = _assessment_func(p)
label_separated[lbl]. append(p)

data_chunks = [[] forforfor i ininin rangerangerange(self.num_chunks)]
label_chunks = [[] forforfor i ininin rangerangerange(self.num_chunks)

]

criteria = anyanyany(lenlenlen(l) forforfor l ininin label_separated)
chunk_index = 0
whilewhilewhile criteria:

slicesliceslice = []
slice_labels = []
forforfor lbl ininin rangerangerange(lenlenlen(label_separated)):

ififif lenlenlen(label_separated[lbl]) == 0:
continuecontinuecontinue

slicesliceslice.append(label_separated[lbl].pop(0))
slice_labels.append(lbl)

data_chunks[chunk_index]. extend(slicesliceslice)
label_chunks[chunk_index]. extend(slice_labels)

chunk_index = (chunk_index + 1) %
self.num_chunks

criteria = anyanyany(lenlenlen(l) forforfor l ininin label_separated
)

#END WHILE LOOP
data_chunks = deque(data_chunks)
label_chunks = deque(label_chunks)

ififif anyanyany(chunk ==[] forforfor chunk ininin data_chunks):
raiseraiseraise RuntimeError("All␣your␣folds␣are␣not␣

populated␣with␣data.␣Can␣you␣get␣more␣
data?.")

www.manaraa.com

CHAPTER 8. APPENDIX 54

returnreturnreturn data_chunks ,label_chunks

defdefdef
__process_input(self ,fixation_filename ,num_data_chunks):

participants = {}
#parsing the csv file
with openopenopen(fixation_filename ,’r’) as f:

reader = csv.reader(f)
#retreiving the column headers from the csv file
column_headers = nextnextnext(reader)
column_headers =

[header.encode(’ascii’,errors=’ignore ’).decode(’utf -8’)
forforfor header ininin column_headers]

forforfor row ininin reader:
#creating a dictionary for each line of data
row_dict = dictdictdict(zipzipzip(column_headers ,row))
subject = row_dict[’subject -id’]
#updating list of participant data
ififif subject ininin participants:

participants[subject]. append(row_dict)
elseelseelse:

participants[subject] = [row_dict]

participants = [Participant(subject_id ,data) forforfor
subject_id ,data ininin participants.items()]

returnreturnreturn participants

8.1.2 Neural Net Feature Extractor

fromfromfrom importlib importimportimport import_module
importimportimport cv2
importimportimport numpy as np

classclassclass FeatureExtractor(objectobjectobject):
"""

www.manaraa.com

CHAPTER 8. APPENDIX 55

Class to extract features from pretrained neural
networks

trained on imagenet with max pooling applied.

This class utilizes keras to automatically leverage
hardware resources and retrieve pretrained networks.
available networks are:

- xception
- vgg16
- vgg19
- resnet50
- inception_v3
- inception_resnet_v2
- mobilenet
- densenet121
- densenet169
- densenet201
- nasnetlarge
- nasnetmobile
- mobilenetv2

see: https :// keras.io/applications/ for more details
kwargs for network instantiation are:

include_top=False ,
weights=’imagenet ’,
pooling=’avg’

Instantiation Args:
network_name (str): name of network to extract

features from
interpolation (cv2 constant): type of interpolation

used to
resize images

Example Use Case:
network = FeatureExtractor(’resnet50 ’)

www.manaraa.com

CHAPTER 8. APPENDIX 56

lenna_features = network.extract_features(’lenna ’)

"""
__SUBMODULES = {’xception ’:

’keras.applications.xception ’,
’vgg16’: ’keras.applications.vgg16’,
’vgg19’: ’keras.applications.vgg19’,
’resnet50 ’:

’keras.applications.resnet50 ’,
’inception_v3 ’:

’keras.applications.inception_v3 ’,
’inception_resnet_v2 ’:

’keras.applications.inception_resnet_v2 ’,
’mobilenet ’:

’keras.applications.mobilenet ’,
’densenet121 ’:

’keras.applications.densenet ’,
’densenet169 ’:

’keras.applications.densenet ’,
’densenet201 ’:

’keras.applications.densenet ’,
’nasnetlarge ’:

’keras.applications.nasnet ’,
’nasnetmobile ’:

’keras.applications.nasnet ’,
’mobilenetv2 ’:

’keras.applications.mobilenetv2 ’,
}

__FUNCTION_NAMES = {’xception ’: ’Xception ’,
’vgg16’: ’VGG16’,
’vgg19’: ’VGG19’,
’resnet50 ’: ’ResNet50 ’,
’inception_v3 ’: ’InceptionV3 ’,
’inception_resnet_v2 ’:

’InceptionResNetV2 ’,
’mobilenet ’: ’MobileNet ’,

www.manaraa.com

CHAPTER 8. APPENDIX 57

’densenet121 ’: ’DenseNet121 ’,
’densenet169 ’: ’DenseNet169 ’,
’densenet201 ’: ’DenseNet201 ’,
’nasnetlarge ’: ’NASNetLarge ’,
’nasnetmobile ’: ’NASNetMobile ’,
’mobilenetv2 ’: ’MobileNetV2 ’,
}

defdefdef __init__(self ,
network_name=’inception_v3 ’,
pooling_type=’avg’):

self.model , self.preprocess_fn , self.kerasbackend\
=

self.__keras_importer(network_name ,pooling_type)
self.network_name = network_name
self.pooling_type = pooling_type

defdefdef extract_features_from_specific_layer(self , imgs ,
layer_idx):
"""
Extracts image features from a specific layer the

neural network specified in
__init__

input::
imgs (list): list of images
layer_idx: layer from where you want features

returns ::
features (np.ndarray): features for this image

"""
imgs = self.__build_image_data(imgs)
get_features = self.kerasbackend.function
([self.model.layers [0].inputinputinput ,

self.kerasbackend.learning_phase ()],
[self.model.layers[layer_idx]. output])

www.manaraa.com

CHAPTER 8. APPENDIX 58

features = get_features ([imgs ,0])
batch_features = np.vsplit(features [0], features [0]. shape [0])

features = np.vstack([arr.reshape(1,arr.size) forforfor
arr ininin batch_features])

returnreturnreturn features

defdefdef extract_features(self , imgs):
"""
Extracts image features from a the neural network

specified in
__init__

input::
imgs (list): list of images

returns ::
features (np.ndarray): features for this image

"""
Error checking for img occurs in

__build_image_data
imgs = self.__build_image_data(imgs)
features = self.model.predict(imgs)
returnreturnreturn features

defdefdef __build_image_data(self , imgs):
"""
this function turns an input numpy array or image

path into an
array format which keras requires for network

feeding
that format being a 4D tensor

(batch ,rows ,cols ,bands)
(batch size will be always be 1 in this case)

input::
img (list):

list of numpy arrays

www.manaraa.com

CHAPTER 8. APPENDIX 59

preprocess_fn (func):
preprocessing function for image data ,

output from
self.__keras_importer

returns ::
img_data (np.ndarray):

4D numpy array of the form
(num_images ,rows ,cols ,bands)

"""
the image must be numpy array so it can be

processed
ififif notnotnot isinstanceisinstanceisinstance(imgs , listlistlist):

raiseraiseraise ValueError("imgs␣must␣be␣a␣list␣of␣numpy␣
arrays.")

imgs = np.stack(imgs ,axis =0)

preprocessing the image
img_data = self.preprocess_fn(imgs)
returnreturnreturn img_data

defdefdef __keras_importer(self , network_name , pooling_type):
"""
Retrieves the feature extraction algorithm and

preprocess_fns
from keras , only importing the desired model

specified by the
network name.

input::
network_name (str):

name of the network being used for feature
extraction

pooling_type (str):
type of pooling you want to use (’avg’ or

’max ’)

www.manaraa.com

CHAPTER 8. APPENDIX 60

returns ::
1) model (func):

function that extract features from the NN
2) preprocess_fn (func):

function that preprocesses the image for
the network

"""
checking to make sure network_name is valid
ififif network_name notnotnot ininin self.__SUBMODULES:

error_string = "unknown␣network␣
’{network_name}’,network_name␣must␣be␣one␣of␣
{network_list}".formatformatformat(network_name=network_name ,

network_list=self.__SUBMODULES.keys())
raiseraiseraise ValueError(error_string)

assert pooling_type ininin
[’avg’,’max’],"’pooling_type ’␣must␣be␣one␣of␣the␣
following␣strings␣[’avg ’,’max ’]"

importing the proper keras model and preprocess_fn
submodule =

import_module(self.__SUBMODULES[network_name])
model_constructor = getattrgetattrgetattr(submodule ,

self.__FUNCTION_NAMES[network_name])
model = model_constructor(include_top=False ,

weights=’imagenet ’,
pooling=pooling_type)

preprocess_fn = getattrgetattrgetattr(submodule ,
’preprocess_input ’)

fromfromfrom keras importimportimport backend as kerasbackend

returnreturnreturn model , preprocess_fn , kerasbackend

defdefdef __del__(self):

www.manaraa.com

CHAPTER 8. APPENDIX 61

deldeldel self.model
self.kerasbackend.clear_session ()

END

8.1.3 Fisher Vector Extractor

"""
Code from - https :// github.com/jonasrothfus
/fishervector/blob/master/fishervector
/FisherVector.py
"""
importimportimport numpy as np
fromfromfrom sklearn.mixture importimportimport GaussianMixture
importimportimport pickle , os

N_Kernel_Choices = [5, 20, 60, 100, 200, 500]

classclassclass FisherVectorExtraction(objectobjectobject):
defdefdef __init__(self , n_kernels=1, covariance_type=’diag’,

reg_covar =1e-6):
assert covariance_type ininin [’diag’, ’full’]
assert n_kernels > 0

self.n_kernels = n_kernels
self.covariance_type = covariance_type
self.reg_covar = reg_covar
self.fitted = False

defdefdef score(self , X):
returnreturnreturn self.gmm.bic(X.reshape(-1, X.shape [-1]))

defdefdef fit(self , X, model_dump_path=None , verbose=True):
"""

www.manaraa.com

CHAPTER 8. APPENDIX 62

:param X: either a ndarray with 4 dimensions (n_videos ,
n_frames , n_descriptors_per_image , n_dim_descriptor)

or with 3 dimensions (n_images ,
n_descriptors_per_image , n_dim_descriptor)

:param model_dump_path: (optional) path where the
fitted model shall be dumped

:param verbose - boolean that controls the verbosity
:return: fitted Fisher vector object
"""

all_feats = []
max_size = maxmaxmax([a.shape [0] forforfor a ininin X])
num_features = X[0]. shape [1]
forforfor i ininin rangerangerange(lenlenlen(X)):

features_array_init =
np.zeros([max_size ,num_features])

#import pdb;pdb.set_trace ()
feat = X[i][0]
features_array_init [0: feat.shape [0],:] = feat
feats = np.reshape(features_array_init ,
(1
,features_array_init.shape [0]
,features_array_init.shape [1]))
all_feats.append(feats)

import pdb;pdb.set_trace ()
X = np.vstack(all_feats)
#import pdb;pdb.set_trace ()
#X = np.reshape(X,(1,X.shape[0],X.shape [1]))
ififif X.ndim == 4:

self.ndim = 4
returnreturnreturn self._fit(X, model_dump_path=model_dump_path ,

verbose=verbose)

elifelifelif X.ndim == 3:
import pdb;pdb.set_trace ()
self.ndim = 3
import pdb;pdb.set_trace ()

www.manaraa.com

CHAPTER 8. APPENDIX 63

X = np.reshape(X, [1] + listlistlist(X.shape))
returnreturnreturn self._fit(X, model_dump_path=model_dump_path ,

verbose=verbose)

elseelseelse:
import pdb;pdb.set_trace ()
raiseraiseraise AssertionError("X␣must␣be␣an␣ndarray␣with␣3␣or␣

4␣dimensions")

defdefdef fit_by_bic(self , X,
choices_n_kernels=N_Kernel_Choices ,
model_dump_path=None , verbose=True):

"""
Fits the GMM with various n_kernels and selects the

model with the lowest BIC
:param X: either a ndarray with 4 dimensions (n_videos ,

n_frames , n_descriptors_per_image , n_dim_descriptor)
or with 3 dimensions (n_images ,

n_descriptors_per_image , n_dim_descriptor)
:param choices_n_kernels: array of positive integers

that specify with how many kernels the GMM shall be
trained

default: [20, 60, 100, 200,
500]

:param model_dump_path: (optional) path where the
fitted model shall be dumped

:param verbose - boolean that controls the verbosity
:return: fitted Fisher vector object
"""
ififif X.ndim == 4:

self.ndim = 4
returnreturnreturn self._fit_by_bic(X,

choices_n_kernels=choices_n_kernels ,
model_dump_path=model_dump_path , verbose=verbose)

elifelifelif X.ndim == 3:
self.ndim = 3

www.manaraa.com

CHAPTER 8. APPENDIX 64

X = np.reshape(X, [1] + listlistlist(X.shape))
returnreturnreturn self._fit_by_bic(X,

choices_n_kernels=choices_n_kernels ,
model_dump_path=model_dump_path , verbose=verbose)

elseelseelse:
raiseraiseraise AssertionError("X␣must␣be␣an␣ndarray␣with␣3␣or␣

4␣dimensions")

defdefdef predict(self , X, normalized=True):
"""
Computes Fisher Vectors of provided X
:param X: either a ndarray with 4 dimensions (n_videos ,

n_frames , n_descriptors_per_image , n_dim_descriptor)
or with 3 dimensions (n_images ,

n_descriptors_per_image , n_dim_descriptor)
:param normalized: boolean that indicated whether
the fisher vectors shall be normalized -->
improved fisher vector
(https ://www.robots.ox.ac.uk/~vgg/rg/papers
/peronnin_etal_ECCV10.pdf)

:returns fv: fisher vectors
if X.ndim is 4 then returns ndarray of

shape (n_videos , n_frames , 2*n_kernels ,
n_feature_dim)

if X.ndim is 3 then returns ndarray of
shape (n_images , 2*n_kernels ,
n_feature_dim)

"""
all_feats = []
max_size = maxmaxmax([a.shape [0] forforfor a ininin X])
num_features = X[0]. shape [1]
forforfor i ininin rangerangerange(lenlenlen(X)):

features_array_init =
np.zeros([max_size ,num_features])

feat = X[i][0]
features_array_init [0: feat.shape [0],:] = feat

www.manaraa.com

CHAPTER 8. APPENDIX 65

feats = np.reshape(features_array_init ,
(1
,features_array_init.shape [0]
,features_array_init.shape [1]))
all_feats.append(feats)

#import pdb;pdb.set_trace ()
X = np.vstack(all_feats)

ififif X.ndim == 4:
returnreturnreturn self._predict(X, normalized=normalized)

elifelifelif X.ndim == 3:
orig_shape = X.shape
X = np.reshape(X, [1] + listlistlist(X.shape))
result = self._predict(X, normalized=normalized)
#import pdb;pdb.set_trace ()
returnreturnreturn np.reshape(result , (orig_shape [0], 2 *

self.n_kernels , orig_shape [-1]))

elseelseelse:
raiseraiseraise AssertionError

defdefdef _fit(self , X, model_dump_path=None , verbose=True):
"""
:param X: shape (n_videos , n_frames ,

n_descriptors_per_image , n_dim_descriptor)
:param model_dump_path: (optional) path where the

fitted model shall be dumped
:param verbose - boolean that controls the verbosity
:return: fitted Fisher vector object
"""
assert X.ndim == 4
self.feature_dim = X.shape[-1]

X = X.reshape(-1, X.shape [-1])

www.manaraa.com

CHAPTER 8. APPENDIX 66

fit GMM and store params of fitted model
self.gmm = gmm =

GaussianMixture(n_components=self.n_kernels ,
covariance_type=self.covariance_type ,reg_covar=self.reg_covar ,
max_iter =1000).fit(X)

self.covars = gmm.covariances_
self.means = gmm.means_
self.weights = gmm.weights_

if cov_type is diagonal - make sure that covars holds
a diagonal matrix

ififif self.covariance_type == ’diag’:
cov_matrices = np.empty(shape =(self.n_kernels ,

self.covars.shape[1], self.covars.shape [1]))
forforfor i ininin rangerangerange(self.n_kernels):

cov_matrices[i, :, :] = np.diag(self.covars[i, :])
self.covars = cov_matrices

assert self.covars.ndim == 3
self.fitted = True
ififif verbose:

printprintprint(’fitted␣GMM␣with␣%i␣kernels ’%self.n_kernels)

ififif model_dump_path:
with openopenopen(model_dump_path , ’wb’) as f:

pickle.dump(self ,f, protocol =4)
ififif verbose:

printprintprint(’Dumped␣fitted␣model␣to’, model_dump_path)

returnreturnreturn self

defdefdef _fit_by_bic(self , X,
choices_n_kernels=N_Kernel_Choices ,
model_dump_path=None , verbose=True):

"""
Fits the GMM with various n_kernels and selects the

www.manaraa.com

CHAPTER 8. APPENDIX 67

model with the lowest BIC
:param X: shape (n_videos , n_frames ,

n_descriptors_per_image , n_dim_descriptor)
:param choices_n_kernels: array of positive integers

that specify with how many kernels the GMM shall be
trained

default: [20, 60, 100, 200,
500]

:param model_dump_path: (optional) path where the
fitted model shall be dumped

:param verbose - boolean that controls the verbosity
:return: fitted Fisher vector object
"""

bic_scores = []
forforfor n_kernels ininin choices_n_kernels:

self.n_kernels = n_kernels
bic_score = self.fit(X, verbose=False).score(X)
bic_scores.append(bic_score)

ififif verbose:
printprintprint(’fitted␣GMM␣with␣%i␣kernels␣-␣BIC␣=␣

%.4f’%(n_kernels , bic_score))

best_n_kernels =
choices_n_kernels[np.argmin(bic_scores)]

self.n_kernels = best_n_kernels
ififif verbose:

printprintprint(’Selected␣GMM␣with␣%i␣kernels ’ % best_n_kernels)

returnreturnreturn self.fit(X, model_dump_path=model_dump_path ,
verbose=True)

defdefdef _predict(self , X, normalized=True):
"""
Computes Fisher Vectors of provided X

www.manaraa.com

CHAPTER 8. APPENDIX 68

:param X: features - ndarray of shape (n_videos ,
n_frames , n_features , n_feature_dim)

:param normalized: boolean that indicated whether the
fisher vectors shall be normalized --> improved
fisher vector

:returns fv: fisher vectors - ndarray of shape
(n_videos , n_frames , 2*n_kernels , n_feature_dim)

"""
assert self.fitted , "Model␣(GMM)␣must␣be␣fitted"
assert self.feature_dim == X.shape[-1], "Features␣must␣

have␣same␣dimensionality␣as␣fitted␣GMM"
assert X.ndim == 4

n_videos , n_frames = X.shape [0], X.shape [1]

X = X.reshape((-1, X.shape[-2], X.shape [-1]))
#(n_images , n_features , n_feature_dim)

X_matrix = X.reshape(-1, X.shape [-1])

set equal weights to predict likelihood ratio
self.gmm.weights_ = np.ones(self.n_kernels) /

self.n_kernels
likelihood_ratio =

self.gmm.predict_proba(X_matrix).reshape(X.shape[0],
X.shape[1], self.n_kernels)

var = np.diagonal(self.covars , axis1=1, axis2 =2)

norm_dev_from_modes = ((X[:,:, None , :] -
self.means[None , None , :, :])/ var[None , None , :,
:]) # (n_images , n_features , n_kernels , n_featur_dim)

mean deviation
mean_dev = np.multiply(likelihood_ratio [:,:,:, None],

norm_dev_from_modes).mean(axis =1) #(n_images ,
n_kernels , n_feature_dim)

mean_dev = np.multiply (1 / np.sqrt(self.weights[None ,

www.manaraa.com

CHAPTER 8. APPENDIX 69

:, None]), mean_dev) #(n_images , n_kernels ,
n_feature_dim)

covariance deviation
cov_dev = np.multiply(likelihood_ratio [:,:,:, None],

norm_dev_from_modes **2 - 1).mean(axis =1)
cov_dev = np.multiply (1 / np.sqrt(2 *

self.weights[None , :, None]), cov_dev)

fisher_vectors = np.concatenate ([mean_dev , cov_dev],
axis =1)

final reshape - separate frames and videos
assert fisher_vectors.ndim == 3
fisher_vectors = fisher_vectors.reshape ((n_videos ,

n_frames , fisher_vectors.shape[1],
fisher_vectors.shape [2]))

ififif normalized:
fisher_vectors = np.sqrt(np.absabsabs(fisher_vectors)) *

np.sign(fisher_vectors) # power normalization
fisher_vectors = fisher_vectors /

np.linalg.norm(fisher_vectors ,
axis =(2,3))[:,:,None ,None]

fisher_vectors[fisher_vectors < 10** -4] = 0

assert fisher_vectors.ndim == 4

returnreturnreturn fisher_vectors

8.1.4 Main Calling Script

importimportimport cv2
importimportimport os
importimportimport math
importimportimport numpy as np

www.manaraa.com

CHAPTER 8. APPENDIX 70

importimportimport fixationanalyzer as fa
fromfromfrom fixationanalyzer importimportimport FeatureExtractor
fromfromfrom fixationanalyzer importimportimport FisherVectorExtraction
fromfromfrom fixationanalyzer importimportimport SVM_Classifier
fromfromfrom fixationanalyzer importimportimport DNNClassifier
fromfromfrom sklearn.decomposition importimportimport PCA
fromfromfrom datetime importimportimport datetime
importimportimport tensorflow as tf
importimportimport time

CONFIGS = {}

IMG_CACHE = {}
defdefdef get_image_patches(fixations ,labels):

"""
Generator which returns batches of image patches of

specified size

"""

patch_batch = []
#label_batch = []
batch_index = 1
forforfor paintings ,label ininin zipzipzip(fixations ,labels):

forforfor painting_id ,painting_fixations ininin
paintings.items():
#adding the image to image cache if it’s not

already there
ififif painting_id notnotnot ininin IMG_CACHE:

image_name = os.path.join
(CONFIGS[’IMAGE_DIR ’],strstrstr(painting_id
)+’.jpg’)
IMG_CACHE[painting_id] =

cv2.imread(image_name)

www.manaraa.com

CHAPTER 8. APPENDIX 71

painting_img = IMG_CACHE[painting_id]
height ,width = painting_img.shape [:2]
max_left = math.ceil(CONFIGS[’PATCH_LENGTH ’]/2)
max_right = width -

math.ceil(CONFIGS[’PATCH_LENGTH ’]/2)
max_top = math.ceil(CONFIGS[’PATCH_LENGTH ’]/2)
max_bottom = height -

math.ceil(CONFIGS[’PATCH_LENGTH ’]/2)

forforfor i,fix ininin enumerateenumerateenumerate(painting_fixations):

#throwing away fixation data that is close
to the image border

X,Y = fix[’X’],fix[’Y’]
ififif X<max_left:

continuecontinuecontinue
ififif X>max_right:

continuecontinuecontinue
ififif Y<max_top:

continuecontinuecontinue
ififif Y>max_bottom:

continuecontinuecontinue
left = X - (CONFIGS["PATCH_LENGTH"] // 2)
right = X + (CONFIGS["PATCH_LENGTH"] -

CONFIGS["PATCH_LENGTH"]//2)
top = Y - (CONFIGS["PATCH_LENGTH"] // 2)
bottom = Y + (CONFIGS["PATCH_LENGTH"] -

CONFIGS["PATCH_LENGTH"]//2)
patch = painting_img[

top:bottom ,left:right ,:]. astype
(np.float32)

patch_batch.append(patch)
#label_batch.append(label)

ififif lenlenlen(patch_batch) > 100:
patch_batch = patch_batch [0:100]
yield (patch_batch ,label)

www.manaraa.com

CHAPTER 8. APPENDIX 72

ififif patch_batch != [] andandand lenlenlen(patch_batch) < 100:
import pdb;pdb.set_trace ()
yield (patch_batch ,label)

patch_batch = []

defdefdef extract_features(fixations ,labels):

patch_gen = get_image_patches(fixations ,labels)

#batches , label_batches =
get_image_patches(fixations ,labels)

feature_extractor =
FeatureExtractor(CONFIGS["NETWORK_NAME"],CONFIGS["POOLING_TYPE"])

all_features = []
all_labels = []
batch_index = 1
with tf.device ("/gpu :0"):

forforfor batch ,label_batch ininin patch_gen:
#import pdb;pdb.set_trace ()
ififif CONFIGS[’ALGORITHM_TYPE ’] == ’mfpa -cnn(L)’:

features = feature_extractor
.extract_features_from_specific_layer
(batch ,CONFIGS["LAYER_IDX"])

elifelifelif CONFIGS[’ALGORITHM_TYPE ’] == ’mfpa -cnn(H
␣␣␣␣␣␣␣␣)’:

features = feature_extractor.extract_featur
(batch)
batch_index +=1
import pdb;pdb.set_trace ()
#features = np.vstack(features)

#features =

www.manaraa.com

CHAPTER 8. APPENDIX 73

np.reshape(features ,(1, features.shape[0], features.shape [1]))
all_features.append(features)
all_labels.append(label_batch)

fa.info("all␣neural␣net␣features␣belonging␣to␣each␣
participant␣viewing␣each␣painting␣is␣extracted␣for␣
algorithm␣type␣
{0}".formatformatformat(CONFIGS[’ALGORITHM_TYPE ’]))

#import pdb;pdb.set_trace ()

#all_features = np.vstack(all_features)
deldeldel feature_extractor
returnreturnreturn all_features ,all_labels

defdefdef format_fixations(fixations):
passpasspass

defdefdef test(configs):
globalglobalglobal CONFIGS
CONFIGS = configs
CONFIGS[’FIXATION_FILENAME ’] =

strstrstr(CONFIGS[’FIXATION_FILENAME ’])
CONFIGS[’TRAINING_FRACTION ’] =

floatfloatfloat(CONFIGS[’TRAINING_FRACTION ’])
CONFIGS[’K_FOLDS ’] = intintint(CONFIGS[’K_FOLDS ’])
CONFIGS[’CLASSIFICATION_TYPE ’] =

strstrstr(CONFIGS[’CLASSIFICATION_TYPE ’])
CONFIGS[’IMAGE_DIR ’] = strstrstr(CONFIGS[’IMAGE_DIR ’])
CONFIGS[’ALGORITHM_TYPE ’] =

strstrstr(CONFIGS[’ALGORITHM_TYPE ’])
CONFIGS[’PATCH_LENGTH ’] = intintint(CONFIGS[’PATCH_LENGTH ’])
CONFIGS[’BATCH_SIZE ’] = intintint(CONFIGS[’BATCH_SIZE ’])
CONFIGS[’NETWORK_NAME ’] = strstrstr(CONFIGS[’NETWORK_NAME ’])
CONFIGS[’POOLING_TYPE ’] = strstrstr(CONFIGS[’POOLING_TYPE ’])
CONFIGS[’LAYER_IDX ’] = intintint(CONFIGS[’LAYER_IDX ’])

www.manaraa.com

CHAPTER 8. APPENDIX 74

CONFIGS[’N_KERNELS ’] = intintint(CONFIGS[’N_KERNELS ’])
CONFIGS[’COVARIANCE_TYPE ’] =

strstrstr(CONFIGS[’COVARIANCE_TYPE ’])
CONFIGS[’REG_COVAR ’] = floatfloatfloat(CONFIGS[’REG_COVAR ’])
CONFIGS[’N_COMPONENTS_FOR_PCA ’] =

intintint(CONFIGS[’N_COMPONENTS_FOR_PCA ’])
CONFIGS[’KERNEL_TYPE ’] = strstrstr(CONFIGS[’KERNEL_TYPE ’])
CONFIGS[’C’] = floatfloatfloat(CONFIGS[’C’])
CONFIGS[’LEARNING_RATE ’] =

floatfloatfloat(CONFIGS[’LEARNING_RATE ’])

start_datetime = datetime.now()
dataset_manager =

fa.DatasetManager(CONFIGS["FIXATION_FILENAME"],
training_fractio=CONFIGS["TRAINING_FRACTION",
num_chunks=CONFIGS["K_FOLDS"],
classification_type
=CONFIGS["CLASSIFICATION_TYPE"])

accuracies_k_folds = []

forforfor k ininin rangerangerange(CONFIGS["K_FOLDS"]):
k += 1

startTime = time.time()
train_fixations ,train_labels ,test_fixations ,test_labels

= dataset_manager.get_train_test ()
stopTime = time.time()
printprintprint ("Time:␣" + strstrstr(stopTime - startTime))

ififif CONFIGS["ALGORITHM_TYPE"] ininin
[’mfpa -cnn(L)’,’mfpa -cnn(H)’]:

#generate features on data

www.manaraa.com

CHAPTER 8. APPENDIX 75

startTime = time.time()
train_features ,train_labels =

extract_features(train_fixations ,train_labels)
#train_features =

np.expand_dims(train_features ,axis =1)
test_features ,test_labels =

extract_features(test_fixations ,test_labels)
#test_features =

np.expand_dims(test_features ,axis =1)
stopTime = time.time()
printprintprint ("Time:␣" + strstrstr(stopTime - startTime))
startTime = time.time()
fisher_vector_extraction =

FisherVectorExtraction(CONFIGS[’N_KERNELS ’],
CONFIGS[’COVARIANCE_TYPE ’],
CONFIGS[’REG_COVAR ’])

fa.info("Fitting␣GMM␣on␣train␣set.␣",’
␣␣␣␣␣␣␣␣␣␣␣␣(fold={}, permutation ={})’.formatformatformat(k

,CONFIGS[’PERM_IDX ’]))
fisher_vector_extraction.fit
(train_features)
stopTime = time.time()
printprintprint ("Time:␣" + strstrstr(stopTime -
startTime))
fa.info("Predicting␣Fisher␣Vectors␣on

␣␣␣␣␣␣␣␣␣␣␣␣Train␣set.␣",’(fold={}, permutation ={})’
.formatformatformat(k,CONFIGS[’PERM_IDX ’]))
train_fisher_vectors =
fisher_vector_extraction.predict
(train_features)
train_fisher_vectors = np.reshape
(train_fisher_vectors
,(train_fisher_vectors.shape [0]
,train_fisher_vectors.shape [1]
*train_fisher_vectors.shape [2]))
fa.info("Predicting␣Fisher␣Vectors␣on

␣␣␣␣␣␣␣␣␣␣␣␣Test␣set.␣",’(fold={}, permutation ={})’

www.manaraa.com

CHAPTER 8. APPENDIX 76

.formatformatformat(k,CONFIGS[’PERM_IDX ’]))
test_fisher_vectors =
fisher_vector_extraction.predict
(test_features)
test_fisher_vectors = np.reshape
(test_fisher_vectors ,(test_fisher_vectors
.shape[0], test_fisher_vectors.shape [1]
*test_fisher_vectors.shape [2]))

#Reducing dimensions with pCA
pca =

PCA(n_components=CONFIGS[’N_COMPONENTS_FOR_PCA ’])
pca.fit(train_fisher_vectors)
train_fisher_vectors =

pca.transform(train_fisher_vectors)
test_fisher_vectors =

pca.transform(test_fisher_vectors)
#Classification
fa.info("Entering␣classification␣mode.␣"
,’(fold ={}/{} , permutation ={}/{}) ’.formatformatformat
(k,CONFIGS[’K_FOLDS ’],CONFIGS[’PERM_IDX ’]
,CONFIGS[’NUM_PERM ’]))

ififif CONFIGS[’CLASSIFICATION_TYPE ’] == ’four’:
num_classes = 4

elseelseelse:
num_classes = 2

#import pdb;pdb.set_trace ()
startTime = time.time()
classifier = DNNClassifier
(train_fisher_vectors ,
train_labels ,
test_fisher_vectors ,
test_labels ,
CONFIGS[’LEARNING_RATE ’],
num_classes ,

www.manaraa.com

CHAPTER 8. APPENDIX 77

CONFIGS[’BATCH_SIZE ’],
loss=’sparse_categorical_crossentropy ’,
decay = 1e-6,
momentum = 0.9,
nesterov = True ,
activation_init = ’relu’,
activation_final = ’softmax ’,
dropout = 0.5,
n_epochs = 10)
#import pdb;pdb.set_trace ()
accuracy = classifier.accuracy
accuracies_k_folds.append(accuracy)
stopTime = time.time()
printprintprint ("Time:␣" + strstrstr(stopTime - startTime))

#
dataset_manager.rotate ()

k_fold_classification_accuracy_with_mean =
np.mean(accuracies_k_folds)

k_fold_classification_accuracy_with_std =
np.std(accuracies_k_folds)*2

printprintprint("classification␣accuracy␣{0}%␣for␣algorithm_type␣
{1}␣with␣95%␣CI␣
{2}.".formatformatformat(k_fold_classification_accuracy_with_mean *100,

CONFIGS[’ALGORITHM_TYPE ’],
k_fold_classification_accuracy_with_std))

with openopenopen(’results_ {}.txt’.formatformatformat(start_datetime),’w’)
as f:
f.write("START_DATETIME:␣{}".formatformatformat(start_datetime))
f.write("\n")
f.write("FIXATION_FILENAME:␣

{}".formatformatformat(CONFIGS[’FIXATION_FILENAME ’]))
f.write("\n")
f.write("TRAINING_FRACTION:␣

www.manaraa.com

CHAPTER 8. APPENDIX 78

{}".formatformatformat(CONFIGS[’TRAINING_FRACTION ’]))
f.write("\n")
f.write("K_FOLDS:␣{}".formatformatformat(CONFIGS[’K_FOLDS ’]))
f.write("\n")
f.write("CLASSIFICATION_TYPE:␣

{}".formatformatformat(CONFIGS[’CLASSIFICATION_TYPE ’]))
f.write("\n")
f.write("IMAGE_DIR:␣

{}".formatformatformat(CONFIGS[’IMAGE_DIR ’]))
f.write("\n")
f.write("ALGORITHM_TYPE:␣

{}".formatformatformat(CONFIGS[’ALGORITHM_TYPE ’]))
f.write("\n")
f.write("PATCH_LENGTH:␣

{}".formatformatformat(CONFIGS[’PATCH_LENGTH ’]))
f.write("\n")
f.write("BATCH_SIZE:␣

{}".formatformatformat(CONFIGS[’BATCH_SIZE ’]))
f.write("\n")
f.write("NETWORK_NAME:␣

{}".formatformatformat(CONFIGS[’NETWORK_NAME ’]))
f.write("\n")
f.write("POOLING_TYPE:␣

{}".formatformatformat(CONFIGS[’POOLING_TYPE ’]))
f.write("\n")
f.write("LAYER_IDX:␣

{}".formatformatformat(CONFIGS[’LAYER_IDX ’]))
f.write("\n")
f.write("N_KERNELS:␣

{}".formatformatformat(CONFIGS[’N_KERNELS ’]))
f.write("\n")
f.write("COVARIANCE_TYPE:␣

{}".formatformatformat(CONFIGS[’COVARIANCE_TYPE ’]))
f.write("\n")
f.write("REG_COVAR:␣

{}".formatformatformat(CONFIGS[’REG_COVAR ’]))
f.write("\n")

www.manaraa.com

CHAPTER 8. APPENDIX 79

f.write("N_COMPONENTS_FOR_PCA:␣
{}".formatformatformat(CONFIGS[’N_COMPONENTS_FOR_PCA ’]))

f.write("\n")
f.write("KERNEL_TYPE:␣

{}".formatformatformat(CONFIGS[’KERNEL_TYPE ’]))
f.write("\n")
f.write("C:␣{}".formatformatformat(CONFIGS[’C’]))
f.write("\n")
f.write("ACCURACY :{}".formatformatformat
(k_fold_classification_accuracy_with_mean))
f.write("\n")
f.write("95CI:{}".formatformatformat
(k_fold_classification_accuracy_with_std))
f.write("\n")

CONFIGS = {}

ififif __name__ == "__main__":
fa.main()

	An Application of Deep-Learning to Understand Human Perception of Art
	Recommended Citation

	Introduction
	Background
	Eye Movements and Eye-Tracking Technology
	Types of Eye Movements
	Recording Eye Movements

	Factors Influencing Viewing Behavior
	Influence of Tasks on Viewing Behavior
	Influence of Training on Viewing Behavior

	The Role of Art Training in Aesthetic Appreciation
	Methods for Analyzing Eye Movements
	Studies Differentiating Art Experts and Novices
	Machine Learning to Analyze Eye Movements

	Study Description
	Experiment Design
	Stimuli and Materials
	Procedure

	Methods
	The Summary Statistics Method
	Method based on Gaussian Mixture Model and Fisher Vectors
	Methods Combining MFPA with a Deep CNN
	Feature Extraction From Image Patches
	Feature Extraction From Fixation Locations

	Classification
	Softmax Classifier
	Softmax vs SVM

	Results
	Discussion
	Summary
	Conclusions
	Limitations
	Applications and Future Work

	Appendix
	Python Codes
	Dataset Manager
	Neural Net Feature Extractor
	Fisher Vector Extractor
	Main Calling Script

